K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2019

B A C H M N a)xét tứ giác AMNH có:

góc HMA= 90 độ

góc HNA = 90 độ

góc MAH= 90 độ ( tam giác ABC vuông tại A)

=> AMHN là hình chữ nhật

=> AH=MN( tính chất 2 đường chéo)

18 tháng 10 2019

B A C H M N K I

 tứ giác AMHN có \(\widehat{A}\)=\(\widehat{M}\)=\(\widehat{N}\)=90\(^o\)

nên AMHN là hcn => AH=MN

Nhờ các bạn giải dùm mình câu cuối 3 bài này nhé! Thanks các bạn!Bài 1: Cho Hình chữ nhật ABCD có O là giao điểm hai đường chéo, E nằm giữa O và B. Điểm F đối xứng với A qua E, I là trung điểm của CF.a) CM: OEFC là hình thangb) CM: OEIC là hình bình hành.c) Gọi H và K lần lượt là hình chiếu của F lên BC và CD. CM: CHFK là hình chữ nhật. d) CM: E, H, K thẳng hàng. (nhờ mọi người làm giúp câu...
Đọc tiếp

Nhờ các bạn giải dùm mình câu cuối 3 bài này nhé! Thanks các bạn!

Bài 1: Cho Hình chữ nhật ABCD có O là giao điểm hai đường chéo, E nằm giữa O và B. Điểm F đối xứng với A qua E, I là trung điểm của CF.

a) CM: OEFC là hình thang

b) CM: OEIC là hình bình hành.

c) Gọi H và K lần lượt là hình chiếu của F lên BC và CD. CM: CHFK là hình chữ nhật. 

d) CM: E, H, K thẳng hàng. (nhờ mọi người làm giúp câu này)

 

Bài 2: Cho tam giác ABC vuông tại A (AB>AC). Đường cao AH, gọi M là trung điểm AC. Trên tia đối của tia MH lấy điểm D sao cho MD=MH.

a) CM: ADCH là hình chữ nhật.

b) Gọi E là điểm đối xứng với C qua H. CM: ADHE là hình bình hành.

c) Vẽ EK vuông góc với AB tại K. I là trung điểm AK. CM: KE // IH.

d) Gọi N là trung điểm BE. CM: HK vuông góc với KN. (nhờ mọi người làm giúp câu này)

 

Bài 3: Cho tam giác ABC nhọn, AH là đường cao. Qua A vẽ đường thẳng vuông góc với AH và qua B vẽ đường thẳng vuông góc với BC, hai đường này cắt nhau tại E.

a) Vẽ đường cao BK của tam giác ABC cắt AH tại N. Gọi F là điểm đối xứng của B qua K mà M là điểm đối xứng của A qua K. CM ABMF là hình thoi.

b) Gọi D và I lần lượt là trung điểm của AC và BC. hai đường trung trực của AC và BC cắt nhau tại O. Gọi L là điểm đối xứng với A qua O. CM: LC // BN.

c) CM: N, I, L thẳng hàng. (nhờ mọi người làm giúp câu này)

1
12 tháng 11 2017

Bài này có gì đâu em ! Anh làm nhé !

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE

3 tháng 5 2022

a) -Sửa đề: \(AC=4cm\) (sửa lại cho số được đẹp)

-△ABC vuông tại A có: \(BC^2=AB^2+AC^2\).

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)

△ACH và △BCA có: \(\widehat{AHC}=\widehat{BAC};\widehat{BCA}\) là góc chung.

\(\Rightarrow\)△ACH∼△BCA (g-g) 

\(\Rightarrow\dfrac{CH}{CA}=\dfrac{AC}{BC}\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{4^2}{5}=3,2\left(cm\right)\).

△ABC có: IH//BC (cùng vuông góc AB).

\(\Rightarrow\dfrac{AI}{AB}=\dfrac{CH}{CB}\Rightarrow AI=\dfrac{AB.CH}{CB}=\dfrac{3.3,2}{5}=1,92\left(cm\right)\).

-Tứ giác AIHK có: \(\widehat{IAK}=\widehat{AIH}=\widehat{AKH}=90^0\).

\(\Rightarrow\)AIHK là hình chữ nhật \(\Rightarrow\widehat{AKI}=\widehat{CAH}\).

\(\widehat{CAH}=90^0-\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{AKI}=\widehat{ABC}\).

-△AIK và △ACB có: \(\widehat{AKI}=\widehat{ABC};\widehat{BAC}\) là góc chung.

\(\Rightarrow\)△AIK∼△ACB (g-g).

\(\Rightarrow\dfrac{S_{AIK}}{S_{ACB}}=\left(\dfrac{AI}{AC}\right)^2=\left(\dfrac{1,92}{4}\right)^2=0,2304\)

\(\Rightarrow S_{AIK}=0,2304.S_{ABC}=0,2304.\dfrac{1}{2}.3.4=1,3824\left(cm^2\right)\)

3 tháng 5 2022

b) *CM cắt AH tại D, BM cắt AC tại F.

AH⊥BC tại H, BM⊥BC tại B \(\Rightarrow\)AH//BM.

E đối xứng với H qua AB \(\Rightarrow\widehat{HAB}=\widehat{BAM}\)mà \(\widehat{HAB}=\widehat{ABM}\).

\(\Rightarrow\)\(\widehat{ABM}=\widehat{BAM}\) \(\Rightarrow\)△ABM cân tại M \(\Rightarrow AM=BM\)

\(\widehat{ABM}=\widehat{BAM}\Rightarrow\widehat{MAF}=\widehat{MFA}\) \(\Rightarrow\)△AMF cân tại M \(\Rightarrow AM=FM\).

\(\Rightarrow BM=FM\) nên M là trung điểm BC.

-△BCM có: DH//BM \(\Rightarrow\dfrac{DH}{BM}=\dfrac{DC}{MC}\).

-△FCM có: AD//FM \(\Rightarrow\dfrac{DA}{FM}=\dfrac{DC}{MC}=\dfrac{DH}{BM}\Rightarrow DA=DH\)

\(\Rightarrow\)D là trung điểm AH mà AIHK là hình chữ nhật.

\(\Rightarrow\)D là trung điểm IK.

-Vậy IK, AH, CM đồng quy tại D.

a: Xét tứ giác AMHK có

góc AMH=góc AKH=góc KAM=90 độ

=>AMHK là hình chữ nhật

=>AH=MK

b: Xét ΔAHD có

AB vừa là đường cao, vừa là trung tuyến

nên ΔAHD cân tại A

=>AH=AD và AB là phân giác của góc HAD(1)
Xét ΔHEA có

AC vừa là đường cao, vừa là trung tuyến

nên ΔAHE cân tại A

=>AH=AE và AC là phân giác của góc HAE(2)

Từ (1), (2) suy ra góc DAE=2*90=180 độ

=>D,A,E thẳng hàng

mà AD=AE

nên A là trung điểm của DE

c: Xét ΔAHB và ΔADB có

AH=AD

góc HAB=góc DAB

AB chung

=>ΔAHB=ΔADB

=>góc ADB=90 dộ

=>BD vuông góc DE(3)

Xét ΔAHC và ΔAEC có

AH=AE

góc HAC=góc EAC

AC chung

=>ΔAHC=ΔAEC

=>goc AEC=90 độ

=>CE vuông góc ED(4)

Từ (3), (4) suy ra BD//CE

5 tháng 10 2016

Có nhầm đề không bạn? Mình vẽ hình rồi coi đi coi lại mấy tính chất thấy bài này sai sao đó!

6 tháng 10 2016

@Tôn Thất Khắc Trịnh : Uh, hình như cô giáo cho sai đề r ý, m làm đc câu a,b nh k làm đc câu c. nhìn đi nhìn lại cái đôạn HN rõ ràng dài hơn.

Có ai bit đề bài chính xác là gì k?

15 tháng 12 2016

dễ mà