Cho stn n. C/m rằng A = n2 +4n + 3 ko là scp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm STN n để M=n^4-n+2 là SCP
Câu hỏi tương tự Đọc thêm
Toán lớp 8Số c
Tìm STN n để M=n^4-n+2 là SCP
Tìm STN n để
Tìm STN n để M=n^4-n+2 là SCP
Câu hỏi tương tự Đọc thêm
Toán lớp 8Số chính phương
ai h minh h lai M=n^4-n+2 là SCP
Câu hỏi tương tự Đọc thêm
Toán lớp 8S
Tìm STN n để M=n^4-n+2 là SC
Tìm STN n để M=n^4-n+2 là SCP
Câu hỏi tương tự Đọc thêm
Toán lớp 8Số chính phươngP
Câu hỏi tương tự Đọc thêm
Toán lớp 8Số chính phươngTìm STN n để M=n^4-n+2 là SCP
Tìm STN n để M=n^4-n+2 là SCP
Câu hỏi tương tự Đọc thêm
Toán lớp 8Số chính phương
Câu hỏi tương tự Đọc thêm
Toán lớp 8Số chính phươngố chính phương
Câu hỏi tương tự Đọc thêm
Toán lớp 8Số chính phươnghính phương
b) \(\Rightarrow\left(n+2\right)\inƯ\left(19\right)=\left\{-19;-1;1;19\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{17\right\}\)
a) Do \(n\in N\)
\(\Rightarrow n\inƯ\left(15\right)=\left\{1;3;5;15\right\}\)
c) \(\Rightarrow\left(n+1\right)+8⋮\left(n+1\right)\)
Do \(n\in N\Rightarrow n\inƯ\left(8\right)=\left\{1;2;4;8\right\}\)
d) \(\Rightarrow3\left(n+1\right)+18⋮\left(n+1\right)\)
Do \(n\in N\Rightarrow\left(n+1\right)\inƯ\left(18\right)=\left\{1;2;3;6;9;18\right\}\)
\(\Rightarrow n\in\left\{0;1;2;5;8;17\right\}\)
e) \(\Rightarrow\left(n-2\right)+10⋮\left(n-2\right)\)
Do \(n\in N\Rightarrow\left(n-2\right)\inƯ\left(10\right)=\left\{-2;-1;1;2;5;10\right\}\)
\(\Rightarrow n\in\left\{0;1;3;4;7;12\right\}\)
f) \(\Rightarrow n\left(n+4\right)+11⋮\left(n+4\right)\)
Do \(n\in N\Rightarrow\left(n+4\right)\inƯ\left(11\right)=\left\{11\right\}\)
\(\Rightarrow n\in\left\{7\right\}\)
Ta có :
\(A=n^2+4n+3>n^2+2n+1=\left(n+1\right)^2\)
\(A=n^2+4n+3< n^2+4n+4=\left(n+2\right)^2\)
\(\Rightarrow\left(n+1\right)^2< A< \left(n+2\right)^2\)
Vậy A không phải là số chính phương.
Dễ thấy\(\hept{\begin{cases}\left(n+1\right)^2=n^2+2n+1< A\\A< n^2+4n+4=\left(n+2\right)^2\end{cases}}\)
Suy ra A k là SCP(ĐPCM)