K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Kẻ BD vuông góc AC,CE vuông góc AB

góc BEC=góc BDC=90 độ

=>BEDC nội tiếp

=>góc AED=góc ACB

=>ΔAED đồng dạng vơi ΔACB

Tâm M của đường tròn ngoại tiếp tứ giác BDCE là trung điểm của BC

Gọi H là giao của BD và CE

=>AH vuông góc BC tại N

Gọi giao của OM với (O) là A'

ΔOBC cân tại O

=>OM vuông góc BC

AN<=A'M ko đổi

=>\(S_{ABC}=\dfrac{1}{2}\cdot AN\cdot BC< =\dfrac{1}{2}\cdot A'M\cdot BC_{kođổi}\)

Dấu = xảy ra khi A trùng A'

=>A là điểm chính giữa của cung BC

 

a: Ta có: H và M đối xứng nhau qua AB

nên AB là đường trung trực của MH

Suy ra: AM=AH

Xét ΔAMH có AM=AH

nên ΔAMH cân tại A

mà AB là đường trung trực ứng với cạnh đáy HM

nên AB là tia phân giác của \(\widehat{MAH}\)

 

2 tháng 9 2021

b)

gọi gd của HN và AC là I

gọi gd AB và HM là K

Xét tg HAN có AN là dg trung trực của HN

=> AH=AN=> tg AHN cân tại A.

=> HAI = IAN 

 Vì AB là pg MAH(cmt)=> MAK =KAH 

mà KAH+HAI=A=90 độ

=> MAK+IAN=90 độ

=> MAK+IAN+KAH +HAI=90+90=180 độ

=> A,M,N thẳng hàng    (1)

Ta có: tg AMH cân tại A(cmt)=> AM=AH

          Tg HAN cân tại A(cmt)=> AH=AN

=> AM=AN.              (2)

=> A là td MN

c) xét tg MBH có BK vg góc với MH=> BK là dg cao

                           MK=KH=> BK là dg ttuyến 

=> tg MBH cân tại B(tc tg cân)

=> MB=BH

Chứng minh tương tự cho tg HCN

=> tg HCN cân tại C(tc tg cân)

=> CH=CN

mà BH+HC=BC=> MB+CN=BC