K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 10 2019

Đề là \(tanx=cotx+\frac{1}{cosx}\) hay \(tanx=\frac{cotx+1}{cosx}\) bạn?

16 tháng 10 2019

là đề đầu tiên mà bn hỏi đó b

14 tháng 2 2019

Chọn C

Bổ trợ kiến thức: Ta có thế gii bng máy tính cm tay CASIO fx-570VN PLUS như sau, đu tiên dùng lệnh SHIFT SOLVE để xem 1 nghiệm bất kì có th có ca phương trình đã cho:

Tiếp theo ta tính cos x thì dễ thấy được:

Đến đây ta d dàng chọn được phương án C là phương án đúng thay cho lời giải t luận nhiều phức tạp.

31 tháng 5 2021

1.

ĐK: \(x\ne\dfrac{k\pi}{2}\)

\(cotx-tanx=sinx+cosx\)

\(\Leftrightarrow\dfrac{cosx}{sinx}-\dfrac{sinx}{cosx}=sinx+cosx\)

\(\Leftrightarrow\dfrac{cos^2x-sin^2x}{sinx.cosx}=sinx+cosx\)

\(\Leftrightarrow\left(\dfrac{cosx-sinx}{sinx.cosx}-1\right)\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(1\right)\\cosx-sinx=sinx.cosx\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=0\Leftrightarrow x=-\dfrac{\pi}{4}+k\pi\)

\(\left(2\right)\Leftrightarrow t=\dfrac{1-t^2}{2}\left(t=cosx-sinx,\left|t\right|\le2\right)\)

\(\Leftrightarrow t^2+2t-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-1+\sqrt{2}\\t=-1-\sqrt{2}\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow cosx-sinx=-1+\sqrt{2}\)

\(\Leftrightarrow-\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)=-1+\sqrt{2}\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}-1}{\sqrt{2}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\\x=\dfrac{5\pi}{4}-arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm:

\(x=-\dfrac{\pi}{4}+k\pi;x=\dfrac{\pi}{4}+arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi;x=\dfrac{5\pi}{4}-arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\)

11 tháng 9 2016

a)pt\(\Leftrightarrow cosx\left(cosx+1\right)+sinx.sin^2x=0\)

\(\Leftrightarrow cosx\left(cosx+1\right)+sinx\left(1-cos^2x\right)=0\)

\(\Leftrightarrow\left(cosx+1\right)\left(cosx+sinx-sinx.cosx\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}cosx=1\Leftrightarrow x=\pi+k2\pi\\cosx+sinx-sinx.cosx=0\left(\cdot\right)\end{array}\right.\)

Xét pt(*):

Đặt \(t=cosx+sinx,t\in\left[-\sqrt{2};\sqrt{2}\right]\Rightarrow sinx.cosx=\frac{t^2-1}{2}\)

(*) trở thành:\(t^2-2t-1=0\Leftrightarrow\left[\begin{array}{nghiempt}t=1-\sqrt{2}\\t=1+\sqrt{2}\left(L\right)\end{array}\right.\)

+)\(t=1-\sqrt{2}\Rightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1-\sqrt{2}\\ \Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{\pi}{4}+arcsin\left(\frac{-2+\sqrt{2}}{2}\right)+k2\pi\\x=-\frac{5\pi}{4}-arcsin\left(\frac{-2+\sqrt{2}}{2}\right)+k2\pi\end{cases}\left(k\in Z\right)}\)

NV
18 tháng 10 2020

ĐKXĐ: \(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\\cotx\ne1\end{matrix}\right.\)

\(\frac{1}{\frac{sinx}{cosx}+\frac{cos2x}{sin2x}}=\frac{\sqrt{2}\left(cosx-sinx\right)}{\frac{cosx}{sinx}-1}\)

\(\Leftrightarrow\frac{sin2x.cosx}{cos2x.cosx+sin2x.sinx}=\frac{\sqrt{2}sinx\left(cosx-sinx\right)}{cosx-sinx}\)

\(\Leftrightarrow\frac{sin2x.cosx}{cosx}=\sqrt{2}sinx\)

\(\Leftrightarrow2sinx.cosx=\sqrt{2}sinx\)

\(\Leftrightarrow cosx=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k2\pi\left(l\right)\\x=-\frac{\pi}{4}+k2\pi\end{matrix}\right.\)

Vậy \(x=-\frac{\pi}{4}+k2\pi\)

NV
8 tháng 6 2019

ĐKXĐ: \(x\ne\frac{k\pi}{2}\)

\(\Leftrightarrow\frac{sinx}{cosx}+\frac{cosx}{sinx}=\sqrt{2}\left(sinx+cosx\right)\)

\(\Leftrightarrow\frac{1}{sinx.cosx}=\sqrt{2}\left(sinx+cosx\right)\Leftrightarrow\left(sinx+cosx\right)sinx.cosx=\frac{\sqrt{2}}{2}\)

Đặt \(sinx+cosx=a\) \(\left(\left|a\right|\le\sqrt{2}\right)\)

\(\Rightarrow a^2=1+2sinx.cox\Rightarrow sinx.cosx=\frac{a^2-1}{2}\) pt trở thành:

\(\left(a^2-1\right)a=\sqrt{2}\Leftrightarrow a^3-a-\sqrt{2}=0\)

\(\Leftrightarrow\left(a-\sqrt{2}\right)\left(a^2+a\sqrt{2}+1\right)=0\Rightarrow a=\sqrt{2}\)

\(\Rightarrow sinx+cosx=\sqrt{2}\Rightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=\sqrt{2}\Rightarrow sin\left(x+\frac{\pi}{4}\right)=1\)

\(\Rightarrow...\)

26 tháng 9 2019

Điều kiện Giải bài 3 trang 37 sgk Đại số 11 | Để học tốt Toán 11

      tanx – 2.cotx + 1 = 0

Giải bài 3 trang 37 sgk Đại số 11 | Để học tốt Toán 11

Giải bài 3 trang 37 sgk Đại số 11 | Để học tốt Toán 11 (Thỏa mãn điều kiện).

Vậy phương trình có tập nghiệm

{Giải bài 3 trang 37 sgk Đại số 11 | Để học tốt Toán 11 + kπ; arctan(-2) + kπ} (k ∈ Z)

23 tháng 4 2017

Điều kiện của phương trình: sinx ≠ 0, cos ≠ 0, tan ≠ -1.

Biến đổi tương đương đã cho, ta được

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Phương trình (2) vô nghiệm vì |sin2x + cos2x| ≥ √2.

Phương trình (1) có nghiệm 2x = π/2+kπ,k ∈ Z

⇒ x = π/4+ k π/2,k ∈ Z.

 

Giá trị x = π/4+ k π/2, k = 2n + 1,

với n ∈ Z bị loại do điều kiện tanx ≠ -1.

16 tháng 7 2017

cotx - cot2x = tanx + 1 (1)

Điều kiện: sinx ≠ 0 và cosx ≠ 0. Khi đó:

Giải sách bài tập Toán 11 | Giải sbt Toán 11