Cho mặt phẳng Oxy ,cho đường thẳng (d) có phương trình (m-4)x+(m-3)y=1 (m là tham số). Tìm M để khoảng cách từ gốc tọa độ đến đường thẳng (d) là lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét m=4 =>(d):y=1 =>Khoảng cách từ gốc tọa độ đến đt (d) khi đó là 1
Xét m=3 =>(d):x=-1=> Khoảng cách từ gốc tọa độ đến đt (d) khi đó là 1
Xét \(m\ne4;m\ne3\)
Gọi \(A=Ox\cap\left(d\right)\) \(\Rightarrow A\left(\dfrac{1}{m-4};0\right)\), \(B=Oy\cap\left(d\right)\Rightarrow B\left(0;\dfrac{1}{m-3}\right)\)
Gọi H là hình chiếu của O lên AB
Có \(OH^2=\dfrac{OA^2.OB^2}{OA^2+OB^2}=\dfrac{\left(\dfrac{1}{m-4}\right)^2.\left(\dfrac{1}{m-3}\right)^2}{\left(\dfrac{1}{m-4}\right)^2+\left(\dfrac{1}{m-3}\right)^2}\)
\(=\dfrac{1}{\left(m-4\right)^2\left(m-3\right)^2\left[\dfrac{1}{\left(m-4\right)^2}+\dfrac{1}{\left(m-3\right)^2}\right]}\)
\(=\dfrac{1}{\left(m-4\right)^2+\left(m-3\right)^2}\)
\(=\dfrac{1}{2m^2-14m+25}=\dfrac{1}{2\left(m-\dfrac{7}{2}\right)^2+\dfrac{1}{2}}\le2\)
=> \(OH\le\sqrt{2}\)
=> Khoảng cách lớn nhất gốc tọa độ đến (d) là \(\sqrt{2}\Leftrightarrow m=\dfrac{7}{2}\) (thỏa)
Xét điểm \(A\left(-1;1\right)\). Dễ thấy A thuộc (d). Gọi H là hình chiếu của O trên (d). Ta có \(OH\le OA=\sqrt{2}\). Dấu "=" xảy ra khi và chỉ khi \(H\equiv A\), tức là \(d\perp OA\).
Ta cần tìm m sao cho \(d\perp OA\). Phương trình đường thẳng đi qua O, A là
y = -x. Xét m = 4 thì đường thẳng (d) trở thành \(y=1\), đường thẳng này song song với trục hoành và không vuông góc với d. Xét m khác 4. Khi đó \(\left(m-4\right)x+\left(m-3\right)y=1\Leftrightarrow y=\dfrac{4-m}{m-3}x+\dfrac{1}{m-3}\). Để \(d\perp OA\) thì \(\dfrac{4-m}{m-3}.\left(-1\right)=-1\Leftrightarrow4-m=m-3\Leftrightarrow m=\dfrac{7}{2}\).
Vậy Max \(OH=\sqrt{2}\Leftrightarrow m=\dfrac{7}{2}\).
Đường thẳng (d) qua điểm cố định \(A\left(-1;1\right)\)
Đường thẳng OA có phương trình: \(y=-x\) nên có hệ số góc bằng -1
\(\Rightarrow\) K/c từ O đến (d) lớn nhất khi 2 đường thẳng (d) và OA vuông góc
\(\Rightarrow\) Tích hệ số góc của chúng bằng -1
Ta có: \(\left(m-4\right)x+\left(m-3\right)y=1\Rightarrow\left(3-m\right)y=\left(m-4\right)x-1\)
\(\Rightarrow y=\dfrac{m-4}{3-m}-\dfrac{1}{3-m}\)
\(\Rightarrow\left(\dfrac{m-4}{3-m}\right).\left(-1\right)=-1\)
\(\Rightarrow m-4=3-m\)
\(\Rightarrow m=\dfrac{7}{2}\)
Lời giải:
ĐK: $3m+1\neq 0$
Gọi $A,B$ lần lượt là giao điểm của $(d)$ với $Ox,Oy$
Vì $A\in Ox$ nên $y_A=0$
$y_A=(3m+1)x_A-6m-1=0$
$\Rightarrow x_A=\frac{6m+1}{3m+1}$
Vậy $A(\frac{6m+1}{3m+1},0)$
Tương tự: $B(0, -6m-1)$
Gọi $h$ là khoảng cách từ $O$ đến $(d)$
Khi đó, theo hệ thức lượng trong tam giác vuông ta có:
$\frac{1}{h^2}=\frac{1}{OA^2}+\frac{1}{OB^2}$
$=\frac{1}{|x_A|^2}+\frac{1}{|y_B|^2}$
$=\frac{(3m+1)^2}{(6m+1)^2}+\frac{1}{(6m+1)^2}$
$=\frac{(3m+1)^2+1}{(6m+1)^2}$
Để $h$ max thì $\frac{1}{h^2}$ min
Hay $\frac{(3m+1)^2+1}{(6m+1)^2}$ min
Áp dụng BĐT Bunhiacopxky:
$[(3m+1)^2+1][2^2+(-1)^2]\geq [2(3m+1)+(-1)]^2=(6m+1)^2$
$\Rightarrow 5[(3m+1)^2+1]\geq (6m+1)^2$
$\Rightarrow \frac{1}{h^2}\geq \frac{1}{5}$
Giá trị này đạt tại $\frac{3m+1}{2}=\frac{1}{-1}$
$\Leftrightarrow m=-1$
Với \(m=3\Rightarrow x=-1\Rightarrow\)khoảng cách từ O đến d bằng 1
Với \(m\ne3\)
\(\left(m-4\right)x+\left(m-3\right)y-1=0\)
\(\Leftrightarrow m\left(x+y\right)-\left(4x+3y+1\right)=0\)
\(\Rightarrow d\) luôn đi qua điểm cố định \(A\left(-1;1\right)\)
Gọi H là chân đường vuông góc kẻ từ O xuống d thì OA là đường xiên
\(\Rightarrow OH\le OA\Rightarrow OH_{max}=OA=\sqrt{2}\) khi \(H\equiv A\)
Khi đó \(d\perp OA\)
Gọi pt OA có dạng :
\(y=ax+b\) \(\Rightarrow\left\{{}\begin{matrix}0.a+b=0\\-a+b=1\end{matrix}\right.\) \(\Rightarrow y=-x\)
Phương trình d viết lại:
\(y=\frac{4-m}{m-3}x+\frac{1}{m-3}\)
Do \(d\perp OA\Rightarrow\left(\frac{4-m}{m-3}\right).\left(-1\right)=-1\)
\(\Rightarrow\frac{4-m}{m-3}=1\Rightarrow4-m=m-3\Rightarrow m=\frac{7}{2}\)
Với \(m=3\Rightarrow x=-1\Rightarrow\) khoảng cách từ O đến d bằng 1
Với \(m\ne3\):
\(\left(m-4\right)x+\left(m-3\right)y-1=0\)
\(\Leftrightarrow m\left(x+y\right)-\left(4x+3y+1\right)=0\)
\(\Rightarrow d\) luôn đi qua điểm cố định \(A\left(-1;1\right)\)
Gọi H là chân đường vuông góc kẻ từ O xuống d thì OA là đường xiên
\(\Rightarrow OH\le OA\Rightarrow OH_{max}=OA=\sqrt{2}\) khi \(H\equiv A\)
Khi đó \(d\perp OA\)
Gọi pt OA có dạng \(y=ax+b\Rightarrow\left\{{}\begin{matrix}0.a+b=0\\-a+b=1\end{matrix}\right.\) \(\Rightarrow y=-x\)
Phương trình d viết lại: \(y=\frac{4-m}{m-3}x+\frac{1}{m-3}\)
Do \(d\perp OA\Rightarrow\left(\frac{4-m}{m-3}\right).\left(-1\right)=-1\)
\(\Rightarrow\frac{4-m}{m-3}=1\Rightarrow4-m=m-3\Rightarrow m=\frac{7}{2}\)
rưefdrgrtyh