Tìm GTNN và GTLN của Q=-15/ 3+ căn 6x-x^2-5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=-2\left(x-\dfrac{3}{2}\right)^2+\dfrac{25}{2}\le\dfrac{25}{2}\)
\(Q_{max}=\dfrac{25}{2}\) khi \(x=\dfrac{3}{2}\)
\(A=\dfrac{9\left(x^2+2\right)-9x^2+6x-1}{x^2+2}=9-\dfrac{\left(3x-1\right)^2}{x^2+2}\le9\)
\(A_{max}=9\) khi \(x=\dfrac{1}{3}\)
\(A=\dfrac{12x+34}{2\left(x^2+2\right)}=\dfrac{-\left(x^2+2\right)+x^2+12x+36}{2\left(x^2+2\right)}=-\dfrac{1}{2}+\dfrac{\left(x+6\right)^2}{2\left(x^2+2\right)}\le-\dfrac{1}{2}\)
\(A_{min}=-\dfrac{1}{2}\) khi \(x=-6\)
a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)
\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)
\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)
Vậy MaxQ=10 khi x=2, y=-2
b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)
\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)
Vậy MaxA=14 khi x=-3
+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)
\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)
\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)
Vậy MaxB=5 khi x=-1/2, y=1/3
c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)
Vậy MinP=2 khi x=1, y=-3
\(x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\)
\(\sqrt{\left(x-1\right)^2+4}\ge2\)
\(\sqrt{x^2-2x+5}\ge2\)
Câu hỏi của Huỳnh Cẩm - Toán lớp 9 - Học toán với OnlineMath
đề như vậy đúng không ạ
\(Q=-\frac{15}{3+\sqrt{6x-x^2-5}}.\)
ta xét \(6x-x^2-5\)
\(=-\left(x^2-6x+5\right)\)
\(=-\left(x^2-2\cdot3x+9-4\right)\)
\(=\left[\left(x-3\right)^2-4\right]\)
\(=-\left(x-3\right)^2+4\)
có \(-\left(x-3\right)^2+4\le4\)
\(\Rightarrow\sqrt{-\left(x-3\right)^2+4}\le\sqrt{4}\)
\(\Rightarrow0\le\sqrt{-\left(x-3\right)^2+4}\le2\)
có \(3+\sqrt{6x-x^2-5}\)
\(\Rightarrow3\le3+\sqrt{-\left(x-3\right)^2+4}\le5\)
\(\Rightarrow-5\le-\frac{15}{3+\sqrt{6x-x^2-5}}\le3\)
=> GTNN của Q là -3
=> GTLN của Q là -5
với \(x-3=0;x=3\)