phân tích đa thức sau thành nhân tử
(x+1)(x+2)(x+3)(x+4) - 3
nhanh mk tick nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
\(x^2-5x+6\)
\(=x^2-2x-3x+6\)
\(=x\cdot\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x-2\right)\cdot\left(x-3\right)\)
\(x^2-5x+6\)
\(=x^2-2x-3x+6\)
\(=x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x-2\right).\left(x-3\right)\)
Có : x^2 - x - 2
= ( x^2 - 2x ) + ( x - 2 )
= x . ( x - 2 ) + ( x - 2 )
= ( x - 2 ) . ( x + 1 )
Tk mk nha
x^10 + x^5 + 1
= x^10 + x^9 - x^9 + x^8 - x^8 + x^7 - x^7 + x^6 - x^6 + x^5 + x^5 - x^5 + x^4 - x^4 + x^3 - x^3 + x^2 - x^2 + x - x + 1
= (x^10 + x^9 + x^8) - (x^9 + x^8 + x^7) + (x^7 + x^6 + x^5) - (x^6 + x^5 + x^4) + (x^5 + x^4 + x^3) - (x^3 + x^2 + x) + (x^2 + x + 1)
= x^8 (x^2 + x + 1) - x^7 (x^2 + x + 1) + x^5 (x^2 + x + 1) - x^4 (x^2 + x + 1) + x^3 (x^2 + x + 1) - x (x^2 + x + 1) + (x^2 + x + 1)
= (x^2 + x + 1) (x^8 - x^7 + x^5 - x^4 + x^3 - x + 1)
a/ \(x^4+16\)
\(=x^4+4x^2+16-4x^2\)
\(=\left(x^4+4x^2+16\right)-4x^2\)
\(=\left(x^2+4\right)^2-\left(2x\right)^2\)
\(=\left(x^2+4-2x\right)\left(x^2+4+2x\right)\)
b/ \(64x^4+y^4\)
\(=64x^4+y^4+16x^2y^2-16x^2y^2\)
\(=\left(64x^4+y^4+16x^2y^2\right)-16x^2y^2\)
\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)
\(=\left(y^2+8x^2-4xy\right)\left(8x^2+y^2-4xy\right)\)
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-3\)
\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-3\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-3\)(1)
Đặt \(x^2+5x=t\)
\(\Rightarrow\left(1\right)=t\left(t+2\right)-3=t^2+2t-3\)
\(=t^2+3t-t-3=t\left(t+3\right)-\left(t+3\right)\)
\(=\left(t-1\right)\left(t+3\right)\)(2)
Mà \(x^2+5x=t\)nên \(\left(2\right)=\left(x^2+5x-1\right)\left(x^2+5x+3\right)\)
hay \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-3\)\(=\left(x^2+5x-1\right)\left(x^2+5x+3\right)\)