Cho hình bình hành ABCD. Hai điểm E,F lần lượt lấy trên BC,AD sao cho BE = \(\frac{1}{3}\)BC, DF = \(\frac{1}{3}\)DA và EF lần lượt cắt AB,CD tại G,H. Chứng minh rằng:
a) \(GE+EF=FH\)
b) Tứ giác AECF là hình bình hành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của SSBĐ Love HT - Toán lớp 8 - Học toán với OnlineMath
Cho hình vuông ABCD, O là giao điểm hai đường chéo AC và BD. Qua O kẻ các đường thẳng lần lượt vuông góc với AB,BC,CD,DA tại E,G,F,H.Chứng minh:
a) Bà điểm E,O,F thẳng hàng và ba điểm G,O,H thẳng hàng
b) Tứ giác EGFH lầ hình vuông
a: Xét ΔAEB và ΔCFD có
AE=CF
\(\widehat{EAB}=\widehat{FCD}\)
AB=CD
Do đó: ΔAEB=ΔCFD
Suy ra:BE=FD
Xét ΔADE và ΔCBF có
AE=CF
\(\widehat{DAE}=\widehat{BCF}\)
AE=CF
Do đó: ΔADE=ΔCBF
Suy ra: DE=BF
Xét tứ giác BEDF có
BE=DF
DE=BF
Do đó: BEDF là hình bình hành
Hình vẽ đây :
YAX34P43.jpg (578×558)
Bài làm để Cô Quản Lý giúp đỡ nhá bn :)
Hc tốt
a) Gọi I là trung điểm AF
=> AI = IF = FD = 1/3 AD = 1/3 BC = BE
Mà AI//BE ( vì AD //BC)
=> ABEI là hình bình hành.
=> EI //AB (1)
Xét tam giác AFH có: IE//AG ( theo (1) ) và I là trung điểm AF
=> E là trung điểm FG => EG = EF
Dễ dàng chứng minh được \(\Delta FHD=\Delta EGB\)=> HF = GE
=> GE = HF = EF
b ) DF = 1/3 DA => AF= 2/3 DA
BE = 1/3 BC => EC = 2/3 BC
Vì ABCD là hình bình hành => DA = BC => AF = EC
Mà AF// EC ( vì AD //BC )
=> AF//=EC
=> AECF là hình bình hành.