tìm x,y,z là số tự nhiên biết: (x+y).(y+z).(z+x)+10=2021 các bạn ghi rõ lời giải hộ mình nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x(y-3)=y+7=(y-3)+10$
$\Rightarrow x(y-3)-(y-3)=10$
$\Rightarrow (x-1)(y-3)=10$
Với $x,y$ là số nguyên thì $x-1, y-3$ cũng là số nguyên. Do đó ta có bảng sau:
\(x\left(x+y+z\right)=10\) (1)
\(y\left(y+z+x\right)=25\) (2)
\(z\left(z+x+y\right)=-10\) (3)
Lấy (1) + (2) + (3) theo vế ta có:
\(x\left(x+y+z\right)+y\left(y+z+x\right)+z\left(z+x+y\right)=10+25-10\)
\(\Leftrightarrow\)\(\left(x+y+z\right)^2=25\)
\(\Leftrightarrow\)\(x+y+z=\pm\sqrt{25}=\pm5\)
Nếu \(x+y+z=5\) thì: \(\hept{\begin{cases}x=2\\y=5\\z=-2\end{cases}}\)
Nếu \(x+y+z=-5\)thì \(\hept{\begin{cases}x=-2\\y=-5\\z=2\end{cases}}\)
Vậy...
Hà Văn Hoàng Anh
Ta thấy x là số có 2 chữ số . Gọi x = ab
Ta có x = ab = 10a + b , y = a + b
Có 2 trường hợp đối với z :
- Nếu : \(y=a+b\le9\Rightarrow z=a+b\)
- Nếu : \(y=a+b\ge10\Rightarrow z=a+b-9\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=2007\)
\(\hept{\begin{cases}\left(x+y\right)=3\\\left(y+z\right)=3\end{cases}}\)
\(\Rightarrow x+y=y+z\)
\(\Rightarrow x=z\)
Ta có : z + x = 223
=> 2x = 223
x = 111,5
=> z = 111,5
Ta có : y + z = 3
y + 111,5 = 3
=> y = -103,5
Vậy x = z = 111,5 . y = -103,5