Cho A= 111...15 ( n chữ số 1 ) . B = 11...19 (n chữ số 9 ) . Cmr : A.B+4 Là 1 Số chính phương
:p
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : b = 100...05 ( n-1 chữ số 0 ) = 999...9 ( n chữ số 9 ) + 6 = 9.111...1 ( n chữ số 1 ) + 6 = 9.a + 6
=> a.b + 1 = a.( 9.a + 6 )
= 9.a2 + 6.a + 1
= 9.a2 + 3.a + 3.a + 1
= 3.a.( 3.a + 1 ) + ( 3.a + 1 )
= ( 3.a + 1 ) . ( 3.a + 1 )
= ( 3.a + 1 )2 ( đpcm )
Vậy bài toán được chứng minh !
C.ơn nx bn đã tk cho mk ♥
Theo đề bài ra ta có :
b = 100...05 ( n -1 chữ số 0 ) = 999...9 ( n chữ số 9) + 6 = 9 . 111...1 ( n chữ số 1 ) + 6 = 9 . a + 6
\(\Rightarrow\) a . b + 1 = a . ( 9 . a + 6 )
= 9 . a2 + 6 . a + 1
= 9 . a2 + 3 . a + 3 . a + 1
= 3. a . ( 3 . a + 1 ) + ( 3 . a + 1 )
= ( 3 . a + 1 ) . ( 3 . a + 1 )
= ( 3 . a + 1 )2
\(\Rightarrow\left(Đpcm\right)\)
\(ab+4=\left(11...1.10+5\right)\left(11...1.10+9\right)+4=\left(\frac{10^n-1}{9}.10+5\right)\left(\frac{10^n-1}{9}.10+9\right)+4.\)
\(=\left(\frac{10^{n+1}-10+45}{9}\right)\left(\frac{10^{n+1}-10+81}{9}\right)+4=\frac{\left(10^{n+1}+35\right)\left(10^{n+1}+71\right)+324}{81}\)\
\(=\frac{10^{2n+2}+106.10^{n+1}+2809}{81}=\frac{\left(10^{n+1}+53\right)^2}{81}=\left(\frac{10^{n+1}+53}{9}\right)^2\)
\(10^{n+1}+53=100...053\)(n-1 chữ số 0) có tổng các c/s=1+0+5+3=9
\(\Rightarrow10^{n+1}+53⋮9\Rightarrow\frac{10^{n+1}+53}{9}\in Z\)
=>ab+4 là số chính phương
a+b+1 = 111..11(2n) +444...44(n) + 1 =111...11(n).10n + 111...11(n) +4.111..11(n) +1
= 111...11(n).(10n-1) +6.111..11(n) +1
= 333...332(n) +2.333...33(n) +1 = ( 333.....3(n)+1)2 dpcm
Đặt 111....1<n chữ số 1> là k
Ta có: 111......1<2n chữ số 1>=k.10^n + k
Vì :10^n = 9k + 1
11......1<2n chữ số 1>= k.<9k + 1> +k = 9k^2+k+k = 9k^2 + 2k
Ta có 444........4<n chữ số 4>=4k
vậy a+b+1= 9k^2 +2k+4k+1 = <3k>^2 +2.3k.1 +1^2 = <3k +1>^2
Vậy a+b+1 là một số chính phương
Đặt 111....1<n chữ số 1> là k
Ta có: 111......1<2n chữ số 1>=k.10^n + k
Vì :10^n = 9k + 1
11......1<2n chữ số 1>= k.<9k + 1> +k = 9k^2+k+k = 9k^2 + 2k
Ta có 444........4<n chữ số 4>=4k
vậy a+b+1= 9k^2 +2k+4k+1 = <3k>^2 +2.3k.1 +1^2 = <3k +1>^2
Vậy a+b+1 là một số chính phương
Ta có: \(A+4=111...15+4=111...19=B\) ( có n chữ số 1)
=> \(A.B+4=A\left(A+4\right)+4=A^2+4A+4=\left(A+2\right)^2\) là số chính phương