Cho 50 điểm , trong đó có đúng 1 bộ 10 điểm thẳng hàng . Em vẽ đc bao nhiêu đường thẳng đi qua 2 điểm trong 50 điểm đã cho?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 ; vẽ được 90 đường thẳng đi qua 2 trong 10điểm đã cho . Bài 2 :vẽ được n(n-1)
Bài 2:kết quả là n x (n-1) :2
Bài 1:kết quả là 45 đường thẳng
a. Nếu có đúng 3 điểm thẳng hàng thì số đường thẳng vẽ được là:
50.49/2=1225 (đường thẳng)
b. Thấy nếu có đúng 3 điểm thẳng hàng thì vẽ được 1225 đường thẳng nhưng do có 10 điểm thẳng hàng nên số đường thẳng bị giảm đi là:
10.9/2 - 1=44 (đường thẳng)
=> SỐ đường thẳng vẽ được là:
1225-44=1181 (đường thẳng)
a) Điểm thứ nhất nối được 49 điểm còn lại
Điểm thứ 2 nối được 48 điểm còn lại
...Điểm thứ 49 nối được 1 điểm còn lại
Vậy số đường thẳng là: 1 + 2 + 3+...+ 49 = 49*50:2 = 1225
b) 45 điểm còn lại nối được: 1 + 2 + 3 +...+ 44 = 44 *45:2 = 990 đường thẳng
Mỗi điểm trong 45 điểm nối với 5 điểm kia được 5 đường thẳng, vậy số đường thẳng là: 45 * 5 = 225
5 điểm kia thành 1 đường thẳng. Vậy tổng số đường thẳng là: 990 + 225 + 1 = 1216
Cách 2:
Lẽ ra 5 điểm không có 3 điểm nào thẳng hàng, có thể nối được: 1 + 2 + 3 + 4 = 10 đường thẳng
Nhưng do 5 điểm thẳng hàng nên số đường thẳng giảm đi: 10 - 1 = 9
Vậy tổng số đường thẳng là: 1225 - 9 = 1216
GIẢI
a.Nếu trong 50 điểm không có 3 điểm nào thì ta lấy một trong 50 điểm bất kì nối với các điểm còn lại, ta có: 49 đường thẳng. Làm như vậy với 49 điểm còn lại, ta có: (49.49)+49 = 2450 đường thẳng. Nhưng dễ thấy các đường thẳng đã bị lặp lại, vậy ta có: 2450:2=1225 đường thẳng.
b. Nếu trong 50 điểm trên có 5 điểm thẳng hàng, thì ta có:
Lấy 1 điểm bất kì trong năm đường thẳng đó nối với các điểm còn lại, ta có: 4 đường thẳng. Làm như vậy với 4 điểm còn lại, ta có: (4.4)+ 4 = 20 đường thẳng. Nhưng dễ tháy các đường thẳng đã bị lạp lại nên ta có: 20:2=10 đường thẳng. Mà có 5 điểm thẳng hàng nên:
=> Ta có :10-1=9 đường thẳng.
Vậy số đường thẳng có là: 1225-9=1216 đường thẳng.
____________________________________HẾT_________________________________________