tính giá trị biểu thức\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2020}}{\frac{2019}{1}+\frac{2019}{2}+\frac{2017}{3}+...+\frac{1}{2019}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2\left|2018x-2019\right|+2019}{\left|2018x-2019\right|+1}\)
\(=\frac{\left(2\left(\left|2018x-2019\right|+1\right)\right)+2017}{\left|2018x-2019\right|+1}\)
\(=2+\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất
\(\Rightarrow\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất
\(\Rightarrow\left|2018x-2019\right|+1\)có giá trị nhỏ nhất
Mà \(\left|2018x-2019\right|\ge0\)
\(\Rightarrow\left|2018x-2019\right|+1\ge1\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left|2018x-2019\right|=0\)
\(\Leftrightarrow x=\frac{2019}{2018}\)
Vậy \(M_{MAX}=2019\)tại \(x=\frac{2019}{2018}\)
\(\frac{5^x+5^{x+1}+5^{x+2}}{31}=\frac{3^{2x}+3^{2x+1}+3^{2x+2}}{13}\)
\(\Rightarrow\frac{5^x\left(1+5+5^2\right)}{31}=\frac{3^{2x}\left(1+3+3^2\right)}{13}\)
\(\Rightarrow\frac{5^x\cdot31}{31}=\frac{3^{2x}\cdot13}{13}\)
\(\Rightarrow5^x=3^{2x}\)
Mà \(\left(5;3\right)=1\)
\(\Rightarrow x=2x=0\)
Xét phân thức phụ sau, với n nguyên dương lớn hơn 1 ta có:
Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\left(n+1\right)-n}{\left(n+1\right)\sqrt{n}}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(n+1\right)\sqrt{n}}\)
\(< \frac{2\sqrt{n+1}\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}\right)^2\sqrt{n}}=2\left(\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}\right)\sqrt{n}}\right)\)
\(=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
=> \(\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Áp dụng vào bài toán ta được:
\(A=2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2019}}-\frac{1}{\sqrt{2020}}\right)\)
\(A=2-\frac{2}{\sqrt{2020}}< 2=B\)
Vậy A < B
\(\hept{\begin{cases}A=-\frac{1}{2020}-\frac{3}{2019^2}-\frac{5}{2019^3}-\frac{7}{2019^4}^{ }\\B=-\frac{1}{2020}-\frac{7}{2019^2}-\frac{5}{2019^3}-\frac{3}{2019^4}\end{cases}}\)
=>\(A-B=-\frac{1}{2020}-\frac{3}{2019^2}-\frac{5}{2019^3}-\frac{7}{2019^4}+\frac{1}{2020}+\frac{7}{2019^2}+\frac{5}{2019^3}+\frac{3}{2019^4}\)
\(=>A-B=\left(-\frac{3}{2019^2}+\frac{7}{2019^2}\right)+\left(-\frac{7}{2019^4}+\frac{3}{2019^4}\right)\)
=>\(A-B=\frac{4}{2019^2}+-\frac{4}{2019^4}\)
=>\(A-B=\frac{2019^2.4}{2019^4}-\frac{4}{2019^4}\)
=>\(A>B\)
cách này mình tự nghĩ
1) Ta có: \(2020^2=\left(2019+1\right)^2=2019^2+2.2019+1.\)
\(\Rightarrow1+2019^2=2020^2-2.2019\)
\(\Rightarrow M=\sqrt{1+2019^2+\frac{2019^2}{2020^2}}+\frac{2019}{2020}=\sqrt{2020^2-2.2019+\frac{2019^2}{2020^2}}+\frac{2019}{2020}\)
\(=\sqrt{2020^2-2.2020.\frac{2019}{2020}+\left(\frac{2019}{2020}\right)^2}+\frac{2019}{2020}\)
\(=\sqrt{\left(2020-\frac{2019}{2020}\right)^2}+\frac{2019}{2020}=2020-\frac{2019}{2020}+\frac{2019}{2020}\)
\(=2020\)
Vậy M=2020.
2) Xét : \(k\in N;k\ge2\)ta có:
\(\left(1+\frac{1}{k-1}-\frac{1}{k}\right)^2=1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+\frac{2}{k-1}-\frac{2}{\left(k-1\right)k}-\frac{2}{k}\)
\(=1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+\frac{2}{k-1}-\frac{2}{k-1}+\frac{2}{k}-\frac{2}{k}\)
\(\Rightarrow\left(1+\frac{1}{k-1}-\frac{1}{k}\right)^2=1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}\)
\(\Rightarrow\sqrt{1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}}=1+\frac{1}{k-1}+\frac{1}{k}\)
Cho \(k=3,4,...,2020.\)Ta có:
\(N=\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2019^2}+\frac{1}{2020^2}}\)
\(=\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+...+\left(1+\frac{1}{2018}-\frac{1}{2019}\right)+\left(1+\frac{1}{2019}-\frac{1}{2020}\right)\)
\(=2018+\frac{1}{2}-\frac{1}{2020}=2018\frac{1009}{2020}\)
Vậy \(N=2018\frac{1009}{2020}.\)
\(A=\frac{2020}{2019}-\frac{2019}{2018}+\frac{1}{2019\times2018}\)
\(=\frac{2020\times2018}{2019\times2018}-\frac{2019\times2019}{2019\times2018}+\frac{1}{2019\times2018}\)
\(=\frac{2020\times2018-2019\times2019+1}{2019\times2018}\)
\(=\frac{\left(2019+1\right)\times\left(2019-1\right)-2019\times2019+1}{2019\times2018}\)
\(=\frac{2019\times2019-2019+2019-1-2019\times2019+1}{2019\times2018}\)
\(=\frac{2019\times2019-1-\left(2019\times2019-1\right)}{2019\times2018}\)
\(=\frac{0}{2019\times2018}\)
\(=0\)
Vậy A = 0
ta có
A=2020*2018/2019*2018-2019*2019/2018*2019+1/2018*2019
=>A*(2018*2019)=2020*2018-2019*2019+1
=>A*(2018*2019)=(2019+1)*2018-(2018+1)*2019+1
=>A*(2018*2019)=(2019*2018+2018)-(2018*2019+2019)+1
=>A*(2018*2019)=2019*2018+2018-2018*2019-2019+1
=>A*(2018*2019)=2018-2019+1
=>A*(2018*2019)=2018+1-2019
=>A*(2018*2019)=0
=>A=0/(2018*2019)
=>A=0
Đặt \(A=\frac{\frac{1}{2020}+\frac{2}{2019}+\frac{3}{2018}+...+\frac{2019}{2}+\frac{2020}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)
\(A=\frac{1+\left(\frac{1}{2020}+1\right)+\left(\frac{2}{2019}+1\right)+\left(\frac{3}{2018}+1\right)+...+\left(\frac{2019}{2}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)
\(A=\frac{\frac{2021}{2021}+\frac{2021}{2020}+\frac{2021}{2019}+...+\frac{2021}{2}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)
\(A=\frac{2021\left(\frac{1}{2021}+\frac{1}{2020}+\frac{1}{2019}+...+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}=2021\)
Sửa đề \(\frac{2019}{1}+\frac{2018}{2}+...+\frac{1}{2019}\)
Ta có: \(\frac{2019}{1}+\frac{2018}{2}+...+\frac{1}{2019}\)
\(=\left(2019+1\right)+\left(\frac{2018}{2}+1\right)+...+\left(\frac{1}{2019}+1\right)-2019\)
\(=2020+\frac{2020}{2}+...+\frac{2020}{2019}+\frac{2020}{2020}-2020\)
\(=\frac{2020}{2}+...+\frac{2020}{2019}+\frac{2020}{2020}\)
\(=2020.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2020}\right)\)Thay vào biểu thức A ta được:
\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2020}}{2020.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2020}\right)}=\frac{1}{2020}\)