\(\frac{-8}{11}\)nhân (\(\frac{33}{22}\)+\(\frac{3333}{202020}\)+\(\frac{333333}{303030}\))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{7}{4x}\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)=22\)
\(\frac{7}{4x}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)=22\)
\(\frac{7}{4x}\left[33.\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\right]=22\)
\(\frac{7}{4x}\left[33.\left(\frac{35}{420}+\frac{21}{420}+\frac{14}{420}+\frac{10}{420}\right)\right]=22\)
\(\frac{7}{4x}\left[33.\frac{4}{21}\right]=22\)
\(\frac{7}{4x}.\frac{44}{7}\)=22
\(\frac{11}{x}=22\)
x=11:22
x=\(\frac{1}{2}\)
b,\(\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\right).x=1\)
Đặt A\(=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
Ta có :\(A=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
\(\Rightarrow4A=4.\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\right)\)
\(\Rightarrow4A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}=\frac{32}{64}+\frac{16}{64}+\frac{8}{64}+\frac{4}{64}+\frac{2}{64}+\frac{1}{64}\)
\(\Rightarrow4A=\frac{32+16+8+4+2+1}{64}=\frac{63}{64}\)
\(\Rightarrow A=\frac{63}{64}:4=\frac{63}{256}\)
\(\Rightarrow\frac{63}{256}.x=1\)
\(\Leftrightarrow x=1:\frac{63}{256}=\frac{256}{63}\)
a) 74x.(3312+33332020+333333303030+3333333342424242)=32\frac{7}{4}x.\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)=3247x.(1233+20203333+303030333333+4242424233333333)=32
74x.(3312+3320+3330+3342)=32\frac{7}{4}x.\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)=3247x.(1233+2033+3033+4233)=32
74x.(333.4+334.5+335.6+336.7)=32\frac{7}{4}x.\left(\frac{33}{3.4}+\frac{33}{4.5}+\frac{33}{5.6}+\frac{33}{6.7}\right)=3247x.(3.433+4.533+5.633+6.733)=32
74x.33.(13−14+14−15+15−16+16−17)=32\frac{7}{4}x.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)=3247x.33.(31−41+41−51+51−61+61−71)=32
74x.33.(13−17)=32\frac{7}{4}x.33.\left(\frac{1}{3}-\frac{1}{7}\right)=3247x.33.(31−71)=32
74x.33⋅421=32\frac{7}{4}x.33\cdot\frac{4}{21}=3247x.33⋅214=32
b) 13+16+110+115+...+2x.(x−1)=20072009\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{2}{x.\left(x-1\right)}=\frac{2007}{2009}31+61+101+151+...+x.(x−1)2=20092007
26+212+220+230+...+2(x−1).x=20072009\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{\left(x-1\right).x}=\frac{2007}{2009}62+122+202+302+...+(x−1).x2=20092007
22.3+23.4+24.5+25.6+...+2(x−1).x=20072009\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+...+\frac{2}{\left(x-1\right).x}=\frac{2007}{2009}2.32+3.42+4.52+5.62+...+(x−1).x2=20092007
2.(12−13+13−14+14−15+15−16+...+1x−1−1x)=200720092.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{x-1}-\frac{1}{x}\right)=\frac{2007}{2009}2.(21−31+31−41+41−51+51−61+...+x−11−x1)=20092007
2.(12−1x)=200720092.\left(\frac{1}{2}-\frac{1}{x}\right)=\frac{2007}{2009}2.(21−x1)=20092007
1−2x=200720091-\frac{2}{x}=\frac{2007}{2009}1−x2=20092007
2x=22009\frac{2}{x}=\frac{2}{2009}x2=20092
=> x = 2009
bài 1:
\(\frac{7}{4}\left(\frac{33}{42}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)\)
\(=\frac{7}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(=\frac{7}{4}.33\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(=\frac{231}{4}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(=\frac{231}{4}\left(\frac{1}{3}-\frac{1}{7}\right)\)
\(=\frac{231}{4}\cdot\frac{4}{21}=11\)
\(\left[\left(\frac{2}{193}-\frac{3}{386}\right).\frac{193}{17}+\frac{33}{34}\right]:\left[\left(\frac{7}{1931}+\frac{11}{3862}\right).\frac{1931}{25}+\frac{9}{2}\right]\)
= \(\left[\frac{193}{17}.\frac{2}{193}-\frac{193}{17}.\frac{3}{386}+\frac{33}{34}\right]:\left[\frac{1931}{25}.\frac{7}{1931}+\frac{1931}{25}.\frac{11}{3862}+\frac{9}{2}\right]\)
= \(\left[\frac{2}{17}-\frac{3}{17}+\frac{33}{34}\right]:\left[\frac{7}{25}+\frac{11}{50}+\frac{9}{2}\right]\)
= \(\left[\frac{4}{34}-\frac{6}{34}+\frac{33}{34}\right]:\left[\frac{14}{50}+\frac{11}{50}+\frac{225}{50}\right]\)
= \(\frac{31}{34}:2\)
= \(\frac{31}{68}\)
\(\frac{7}{4}.\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)\)
\(=\frac{7}{4}.\left(\frac{33}{12}+\frac{3333\div101}{2020\div101}+\frac{333333\div10101}{303030\div10101}+\frac{33333333\div1010101}{42424242\div1010101}\right)\)
\(=\frac{7}{4}.\left(\frac{33}{12}+\frac{33}{20}+\frac{11}{10}+\frac{11}{14}\right)\)
= 7/4 . 44/7
= 11
\(\frac{7}{4}.\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)\)
\(=\frac{7}{4}.\left(\frac{33}{3.4}+\frac{33.101}{20.101}+\frac{33.10101}{30.10101}+\frac{33.1010101}{42.1010101}\right)\)
\(=\frac{7}{4}.\left(\frac{33}{3.4}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(=\frac{7}{4}.\left(\frac{33}{3.4}+\frac{33}{4.5}+\frac{33}{5.6}+\frac{33}{6.7}\right)\)
\(=\frac{7}{4}.33.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(=\frac{7}{4}.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(=\frac{7}{4}.33.\left(\frac{1}{3}-\frac{1}{7}\right)\)
\(=\frac{7}{4}.33.\frac{4}{21}\)
\(=11\)
Tham khảo nhé~