Chứng minh rằng:
a) (n+2013).(n+2013) chia hết cho n
b) b.n2+n+1 chia hết cho n
Làm ơn giúp mình nha. Ai nhanh mình tích
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
1002013+2 = 10000000...000+2
= 1000..0002(chia hết cho 3 vì tổng các chữ số chia hết cho 3)
Vậy 1002013+2 chia hết cho 3
Bài 2:
Nếu n+5 là số chẵn thì n + 6 là số lẻ
chẵn nhân lẻ luôn bằng chẵn
Nếu n +5 là số lẻ thì n+6 là số chẵn
lẻ nhân chẵn cũng bằng chẵn
Vậy (n+5).(n+6) là 1 số chẵn
b;
bạn thử từng trường hợp đầu tiên là chia hết cho 2 thì n=2k và 2k+1.
.......................................................................3......n=3k và 3k + 1 và 3k+2
c;
bạn phân tích 2 số ra rồi trừ đi thì nó sẽ chia hết cho 9
d;tương tự b
e;g;tương tự a
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
Ta có : 5 : 4 dư 1 suy ra 5 -1 chia hết cho 4
5^2 :4 dư 1 suy ra 5^2 -1 chia hết cho 4
5^3 :4 dư 1 suy ra 5^3 -1 chia hết cho 4
suy ra 5^n : 4 dư 1 suy ra 5^n - 1 chia hết cho 4
Vậy 5^n - 1 chia hết cho 4 với n thuộc N
tk mk nha
5 : 4 dư 1 thì 5n với n thuộc Z chia cho 4 cũng dư 1
=> Vậy nếu 5n - 1 thì tất nhiên Chia hết cho 4
Ta có:
b. n²+n+1
=n. (bn+1)
Vì n chia hết cho n
=>n. (bn+1) chia hết cho n
=>b. n²+n+1 chia hết cho n
=>đpcm