GPT: \(x^2+12\sqrt{1-x}=x+36\)
Sử dụng trục căn ở tửHãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK x>= -1
Đặt \(\sqrt{x+1}=a\Rightarrow x=a^2-1\)
pt <=> \(\left(a^2-1\right)^2+a^2-1+12a=36\Leftrightarrow a^4-a^2+12a-36=0\)
<=> \(\left(a-2\right)\left(a+3\right)\left(a^2-a+6\right)=0\)
<=> a = 2 hoặc a = -3 hoặc \(a^2-a+6=0\)
(+) a = 2 => x = \(3\)
(+) a = -3 ( loại vì \(\sqrt{x+1}\ge0\) )
(+) \(a^2-a+6=a^2-a+\frac{1}{4}+\frac{23}{4}=\left(a-\frac{1}{2}\right)^2+\frac{23}{4}>0\) => pt vô nghệm
Vậy x = 3 là nghiệm của pt
a ) Đặt \(\sqrt{x+1}=a\Rightarrow x+1=a^2\Rightarrow x=a^2-1\)
Ta có : \(x^2+x+12\sqrt{x+1}=36\)
\(\Leftrightarrow x\left(x+1\right)+12a=36\)
\(\Leftrightarrow a^2\left(a^2-1\right)+12a-36=0\)
\(\Leftrightarrow a^4-a^2+12a-36=0\)
\(\Leftrightarrow a^3\left(a-2\right)+2a^2\left(a-2\right)+3a\left(a-2\right)+18\left(a-2\right)=0\)
\(\Leftrightarrow\left(a-2\right)\left(a^3+2a^2+3a+18\right)=0\)
\(\Leftrightarrow\left(a-2\right)\left[a^2\left(a+3\right)-a\left(a+3\right)+6\left(a+3\right)\right]=0\)
\(\Leftrightarrow\left(a-2\right)\left(a+3\right)\left(a^2-a+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2\\a=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=2\\\sqrt{x+1}=-3\left(VL\right)\end{matrix}\right.\)
\(\Leftrightarrow x+1=4\Leftrightarrow x=3\)
Vậy ...
b ) \(x^4-8x^2+x+12=0\)
\(\Leftrightarrow\left(x^4-8x^2+16\right)+x-4=0\)
\(\Leftrightarrow\left(x^2-4\right)^2+x-4=0\)
Đặt \(4-x^2=a\) , ta có :
\(a^2+x-4=0\) \(\Rightarrow x=4-a^2\)
Ta có : x = \(4-a^2;a=4-x^2\)
\(\Leftrightarrow x-a=x^2-a^2\)
\(\Leftrightarrow\left(x-a\right)\left(1-x-a\right)=0\)
\(\Leftrightarrow\left(x-4+x^2\right)\left(1-x-4+x^2\right)=0\)
\(\Leftrightarrow\left(x^2+x-4\right)\left(x^2+x-3\right)=0\)
\(\Leftrightarrow...\)
\(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\)
\(=\sqrt{x-1-2\sqrt{x-1+1}}+\sqrt{x-1+2\sqrt{x-1}+1}\)
\(=\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}\)
\(=\left|\sqrt{x-1}-1\right|+\left|\sqrt{x-1}+1\right|\)
\(=\sqrt{x-1}-1+\sqrt{x-1}+1\left(x\ge2\right)=2\sqrt{x-1}\)
a) \(\dfrac{1}{\sqrt{5}+\sqrt{7}}=\dfrac{\sqrt{7}-\sqrt{5}}{\left(\sqrt{5}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{5}\right)}=\dfrac{\sqrt{7}-\sqrt{5}}{2}\)
c) \(\dfrac{7}{\sqrt{5}-\sqrt{3}+\sqrt{5}}=\dfrac{7}{2\sqrt{5}-\sqrt{3}}=\dfrac{7\left(2\sqrt{5}+\sqrt{3}\right)}{\left(2\sqrt{5}+\sqrt{3}\right)\left(2\sqrt{5}-\sqrt{3}\right)}\)
\(=\dfrac{14\sqrt{5}+7\sqrt{3}}{17}\)
\(\frac{x-3}{\sqrt{x-1}-\sqrt{2}}=\frac{\left(x-3\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{x-1-2}=\frac{\left(x-3\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{x-3}=\sqrt{x-1}+\sqrt{2}\)
\(\frac{1-x^2}{1-\sqrt{x}}=\frac{\left(1-x^2\right)\left(1+\sqrt{x}\right)}{1-x}\)
\(B=\dfrac{\left(1+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{-1}=-2-3\sqrt{5}-5=-7-3\sqrt{5}\)
\(C=\dfrac{5\sqrt{x}-x}{2x}\)
\(D=\dfrac{\left(\sqrt{a}+1\right)\left(2\sqrt{a}+1\right)}{4a-1}\)
\(E=\dfrac{15}{\sqrt{15}\left(\sqrt{5}-\sqrt{3}\right)}=\dfrac{\sqrt{15}}{\sqrt{5}-\sqrt{3}}=\dfrac{\sqrt{75}+\sqrt{45}}{2}\)