So sánh
3 ..... 1+1=a ax2=b Căn bậc 2 của b Cộng thêm với 12 Bình phương xong cộng lại Nhân 2 chia cho 4 Sin+sin=2 sincos Cos +cos=2 cossin
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) ta có : \(A=\dfrac{sinx-cosx}{2sinx+cosx}=\dfrac{\dfrac{sinx}{sinx}-\dfrac{cosx}{sinx}}{\dfrac{2sinx}{sinx}+\dfrac{cosx}{sinx}}\) \(=\dfrac{1-cotx}{2+cotx}\)
\(=\dfrac{1-3\sqrt{8}}{2+3\sqrt{8}}=\dfrac{-37+9\sqrt{2}}{34}\)
+) ta có : \(A=\dfrac{1+sin^2x}{2+sinx.cosx}=\dfrac{sin^2x+cos^2x+sin^2x}{2sin^2x+2cos^2x+sinx.cosx}\) \(=\dfrac{2sin^2x+cos^2x}{2sin^2x+2cos^2x+sinx.cosx}=\dfrac{\dfrac{2sin^2x}{sin^2x}+\dfrac{cos^2x}{sin^2x}}{\dfrac{2sin^2x}{sin^2x}+\dfrac{2cos^2x}{sin^2x}+\dfrac{sinx.cosx}{sin^2x}}\) \(=\dfrac{2+cot^2x}{2+2cot^2x+cotx}=\dfrac{2+\left(3\sqrt{8}\right)^2}{2+2\left(3\sqrt{8}\right)^2+3\sqrt{8}}=\dfrac{74}{146+3\sqrt{8}}\)
1, \(sin\left(x+\dfrac{\pi}{6}\right)+cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{6}}{2}\)
⇔ \(\dfrac{\sqrt{2}}{2}sin\left(x+\dfrac{\pi}{6}\right)+\dfrac{\sqrt{2}}{2}cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}\)
⇔ \(sin\left(x+\dfrac{\pi}{6}+\dfrac{\pi}{4}\right)=sin\dfrac{\pi}{4}\)
2, \(\left(\sqrt{3}-1\right)sinx+\left(\sqrt{3}+1\right)cosx=1-\sqrt{3}\)
⇔ \(\dfrac{\left(\sqrt{3}-1\right)}{2\sqrt{2}}sinx+\dfrac{\left(\sqrt{3}+1\right)}{2\sqrt{2}}cosx=\dfrac{1-\sqrt{3}}{2\sqrt{2}}\)
⇔ sinx . si
a) √2 cos(x - π/4)
= √2.(cosx.cos π/4 + sinx.sin π/4)
= √2.(√2/2.cosx + √2/2.sinx)
= √2.√2/2.cosx + √2.√2/2.sinx
= cosx + sinx (đpcm)
b) √2.sin(x - π/4)
= √2.(sinx.cos π/4 - sin π/4.cosx )
= √2.(√2/2.sinx - √2/2.cosx )
= √2.√2/2.sinx - √2.√2/2.cosx
= sinx – cosx (đpcm).