Cho các số thực dương a, b, c. Chứng minh rằng
c. \(\frac{a^5}{b^3}+\frac{b^5}{c^3}+\frac{c^5}{a^3}\ge a^2+b^2+c^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sử dụng bất đẳng thức Bunhiacopxki dạng phân thức và khi đó ta được:
\(\frac{a^5}{a^2+ab+b^2}+\frac{b^5}{b^2+bc+c^2}+\frac{c^5}{c^2+ca+a^2}\ge\)
\(\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2}\)
\(\Rightarrow\)Ta cần chỉ ra được:
\(\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2}\ge\frac{a^3+b^3+c^3}{3}\)
Hay: \(2\left(a^3+b^3+c^3\right)\ge a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\)
Dễ thấy: \(a^3+b^3\ge ab\left(a+b\right);b^3+c^3\ge bc\left(b+c\right);c^3+a^3\ge ca\left(c+a\right)\)
Cộng theo vế các bất đẳng thức trên ta được:
\(2\left(a^3+b^3+c^3\right)\ge a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\)
Vậy bất đẳng thức đã được chứng minh.
Lời giải
Bất đẳng thức cần chứng minh được viết lại thành
$latex \frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}}+\frac{2{{a}^{2}}}{3}+\frac{2{{b}^{2}}}{3}+\frac{2{{c}^{2}}}{3}\ge 5$
Ta chứng minh bất đẳng thức sau đây
$latex \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{7}{3}-\frac{2a}{3}$
Thật vậy, bất đẳng thức trên tương đương với
$latex \displaystyle \frac{{{\left( a-1 \right)}^{2}}\left( 2{{a}^{2}}+6a+3 \right)}{3{{a}^{2}}}\ge 0$
Hiển nhiên đúng với a là số thực dương.
Áp dụng tương tự ta được $latex \frac{1}{{{b}^{2}}}+\frac{2{{b}^{2}}}{3}\ge \frac{7}{3}-\frac{2b}{3};\,\,\frac{1}{{{c}^{2}}}+\frac{2{{c}^{2}}}{3}\ge \frac{7}{3}-\frac{2c}{3}$
Cộng theo vế các bất đẳng thức trên ta được
$latex \frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}}+\frac{2{{a}^{2}}}{3}+\frac{2{{b}^{2}}}{3}+\frac{2{{c}^{2}}}{3}\ge 7-\frac{2\left( a+b+c \right)}{3}=5$
Vậy bất đẳng thức được chứng minh. Đẳng thức xảy ra khi và chỉ khi $latex a=b=c=1$.
Chúng ta sẽ khởi đầu kỹ thuật này bằng việc đưa ra cách giải thích cho việc tìm ra bất đẳng thức phụ trên và nó cũng chính là cách giải thích cho các bài toán sau này của chúng ta.
Bài toán trên các biến trong cả hai vế và điều kiện đều không ràng buộc nhau điều này khiến ta nghĩ ngay sẽ tách theo từng biến để chứng minh được đơn giản hơn nếu có thể. Nhưng rõ ràng chỉ từng đó thôi là không đủ. Để ý đến dấu đẳng thức xẩy ra nên ta nghĩ đến chứng minh bất đẳng thức sau
$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{5}{3}\Leftrightarrow \frac{\left( a-1 \right)\left( a+1 \right)\left( 2{{a}^{2}}-3 \right)}{3{{a}^{2}}}\ge 0$
Tuy nhiên đánh giá trên không hoàn toàn đúng với a thực dương.
Để ý là với cách làm trên ta chưa sử dụng điều kiện .
Như vậy ta sẽ không đi theo đường lối suy nghĩ đơn giản ban đầu nữa mà sẽ đi tìm hệ số để bất đẳng thức sau là đúng
$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{5}{3}+ma+n\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)$
Trong đó m và n là các hệ số chưa xác định.
Thiết lập tương tự với các biến b và c ta được
$latex \displaystyle \frac{1}{{{b}^{2}}}+\frac{2{{b}^{2}}}{3}\ge \frac{5}{3}+mb+n;\,\,\frac{1}{{{c}^{2}}}+\frac{2{{c}^{2}}}{3}\ge \frac{5}{3}+mc+n$
Cộng theo vế các bất đẳng thức trên ta có
$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}}+\frac{2{{a}^{2}}+2{{b}^{2}}+2{{c}^{2}}}{3}\ge 5+m\left( a+b+c \right)+3n=5+3\left( m+n \right)$
Như vậy ở đây 2 hệ số m và n phải thỏa mãn điều kiện $latex \displaystyle m+n=0\Leftrightarrow n=-m$. Thế vào (1) dẫn đến
$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{5}{3}+m\left( a-1 \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)$
Đến đây ta chỉ cần xác định hệ số duy nhất là m để bất đẳng thức (2) là đúng. Chú ý đẳng thức xẩy ra tại $latex a=b=c=1$ nên ta cần xác định m sao cho
$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{5}{3}+m\left( a-1 \right)\Leftrightarrow \left( a-1 \right)\left( \frac{\left( a+1 \right)\left( 2{{a}^{2}}-3 \right)}{3{{a}^{2}}}-m \right)\ge 0$
Khi cho $latex a=1$ thì ta có $latex \displaystyle \frac{\left( a+1 \right)\left( 2{{a}^{2}}-3 \right)}{3{{a}^{2}}}=-\frac{2}{3}$ từ đó ta dự đoán rằng $latex \displaystyle m=-\frac{2}{3}$ để tạo thành đại lượng bình phương $latex {{\left( a-1 \right)}^{2}}$ trong biểu thức. Từ đó ta sẽ chứng minh bất đẳng thức phụ
$latex \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{7}{3}-\frac{2a}{3}$
\(=\)\(18\left(\frac{1}{1}+\frac{1}{1}+\frac{1}{1}\right)\)\(=\)\(18\frac{3}{1}\)\(>\)\(\left(9+5\sqrt{3}\right)\left(a^2+b^2+c^2\right)\)\(=\)\(0\)
Vậy\(18\frac{3}{1}\)\(>\)\(0\)
Chứng minh là \(18\frac{3}{1}\)\(>\)\(0\)là đúng
chúc bạn học tốt
Bất đẳng thức trên
<=> + 1 + + 1 + + 1 ≥ 3
<=> + + ≥ 3 (*)
Ta có: VT(*) ≥
Ta sẽ chứng minh: (a + 1)(b + 1)(c + 1) ≥ (ab + 1)(bc + 1)(ca + 1)
<=> abc + ab + bc + ca + a + b + c + 1
≥ a2b2c2 + abc(a + b + c) + ab + bc + ca + 1
<=> 3 ≥ a2b2c2 + 2abc (**)
Theo Cosi: 3 = a + b + c ≥ 3 => ≤ 1 => abc ≤ 1
Vậy (**) đúng => (*) đúng.
Ta có : \(\hept{\begin{cases}\frac{a^3}{a^2+b^2+ab}=\frac{a^4}{a\left(a^2+b^2+ab\right)}=\frac{a^4}{a^3+ab^2+a^2b}=\frac{a^4}{a^3+ab\left(a+b\right)}\\\frac{b^3}{b^2+c^2+bc}=\frac{b^4}{b\left(b^2+c^2+bc\right)}=\frac{b^4}{b^3+bc^2+b^2c}=\frac{b^4}{b^3+bc\left(b+c\right)}\\\frac{c^3}{c^2+a^2+ca}=\frac{c^4}{c\left(c^2+a^2+ca\right)}=\frac{c^4}{c^3+ca^2+c^2a}=\frac{c^4}{c^3+ca\left(c+a\right)}\end{cases}}\)
Khi đó bất đẳng thức được viết lại thành :
\(\frac{a^4}{a^3+ab\left(a+b\right)}+\frac{b^4}{b^3+bc\left(b+c\right)}+\frac{c^4}{c^3+ca\left(c+a\right)}\ge\frac{a+b+c}{3}\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\)
Dễ dàng phân tích \(a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
=> \(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{a+b+c}\)
Xét bất đẳng thức phụ : 3( a2 + b2 + c2 ) ≥ ( a + b + c )2
<=> 3a2 + 3b2 + 3c2 - a2 - b2 - c2 - 2ab - 2bc - 2ca ≥ 0
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca ≥ 0
<=> ( a - b )2 + ( b - c )2 + ( c - a )2 ≥ 0 ( đúng )
Khi đó áp dụng vào bài toán ta có : \(VT\ge\frac{a^2+b^2+c^2}{a+b+c}=\frac{\frac{\left(a+b+c\right)^2}{3}}{a+b+c}=\frac{a+b+c}{3}\)( đpcm )
Đẳng thức xảy ra <=> a=b=c
bài này mới được thầy sửa hồi chiều nè @@
Vì a,b dương => ( a + b ) ( a - b )2 \(\ge\)0 => a3 + b3 \(\ge\)ab ( a + b )
BĐT tương đương với 3a3\(\ge\)2a3 + 2ab ( a + b ) - b3 = 2a3 + 2a2b + 2ab2 - a2b - ab2 - b3 = ( a2 + ab + b3 ) ( 2a - b )
Suy ra : \(\frac{a^3}{a^2+ab+b^2}\ge\frac{2a-b}{3}\)(1)
Chứng minh tương tự ta được : \(\frac{b^3}{b^2+bc+c^2}\ge\frac{2b-c}{3}\)(2) ; \(\frac{c^3}{c^2+ca+a^2}\ge\frac{2c-a}{3}\)(3)
Từ (1) ; (2) và (3) => \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\)(đpcm)
Áp dụng C-S
\(\frac{a}{2a+b+c}=\frac{a}{\left(a+b\right)+\left(a+c\right)}\le\frac{a}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)
b) chính là USAMO 2004. Đây là lời giải cung cấp bởi "http://www.artofproblemsolving.com/wiki/index.php/2004_USAMO_Problems/Problem_5"
Ta chứng minh được \(x^5+1\ge x^3+x^2\) suy ra \(x^5-x^2+3\ge x^3+2\).
Ta chỉ cần CM được \(\left(a^3+1+1\right)\left(1+b^3+1\right)\left(1+1+c^3\right)\ge\left(a+b+c\right)^3\)
Nhưng đây chính là BĐT Holder cho 3 bộ số mỗi bộ 3 số.