Giải hệ phương trình : \(\left\{{}\begin{matrix}\left(x^2+y\right)^3+\left(y^2+x\right)^3=6\left(x^2-x\right)-6\left(y^2-y\right)\\8x^4+8y^4+8x^2+8y^2=9-16xy\left(x+y\right)\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left\{{}\begin{matrix}x^3-x^2y-7\left(x-y\right)=x^2+y^2+2xy+4\\3x^2+y^2-8\left(x-y\right)+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2-7\right)\left(x-y\right)-x^2-2xy=y^2+4\\3x^2-8\left(x-y\right)=-y^2-4\end{matrix}\right.\)
Cộng vế:
\(\left(x^2-7\right)\left(x-y\right)-8\left(x-y\right)+2x^2-2xy=0\)
\(\Leftrightarrow\left(x^2-15\right)\left(x-y\right)+2x\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+2x-15\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x^2+2x-15=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
e) Sửa đề: \(\left\{{}\begin{matrix}x\left(x^2-y^2\right)+x^2=2\sqrt{\left(x-y^2\right)^3}\\76x^2-20y^2+2=\sqrt[3]{4x\left(8x+1\right)}\end{matrix}\right.\)
PT(1) \(\Leftrightarrow x^3+x\left(x-y^2\right)=\sqrt{\left(x-y^2\right)^3}\)
Đặt \(\sqrt{x-y^2}=a.\text{Thay vào, ta có: }x^3+xa^2-2a^3=0\)
Làm tiếp như ở Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học toán với OnlineMath
Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira, Nguyễn Thị Ngọc Thơ, Nguyễn Lê Phước Thịnh, Quân Tạ Minh, An Võ (leo), @tth_new
e nhiều bài quá giải k kịp mn giúp e vs ạ!cần gấp lắm ạ
thanks nhiều!
a.
Thay số 12 từ pt trên xuống dưới:
\(x^3+2xy^2+y\left(x^2+8y^2\right)=0\)
\(\Leftrightarrow x^3+x^2y+2xy^2+8y^3=0\)
\(\Leftrightarrow\left(x+2y\right)\left(x^2-xy+4y^2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2y\\x=y=0\left(ktm\right)\end{matrix}\right.\)
Thế vào pt đầu:
\(\left(-2y\right)^2+8y^2=12\Leftrightarrow y^2=1\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-2\\y=-1\Rightarrow x=2\end{matrix}\right.\)
b.
Thế số 1 từ pt trên xuống dưới:
\(x^7+y^7=\left(x^4+y^4\right)\left(x^3+y^3\right)\)
\(\Leftrightarrow x^4y^3+x^3y^4=0\)
\(\Leftrightarrow x^3y^3\left(x+y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\\y=-x\end{matrix}\right.\)
Thế vào pt đầu: \(\Rightarrow\left[{}\begin{matrix}y^3=1\\x^3=1\\x^3-x^3=1\left(vô-nghiệm\right)\end{matrix}\right.\)
Vậy nghiệm của hệ là: \(\left(x;y\right)=\left(1;0\right);\left(0;1\right)\)