Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AB = 10cm
BC= 12 cm
Gọi \(H=AD\) \(\Omega\) \(BC\)
Ta có AD vuông góc với BC mà ADlà đường kính
\(\Rightarrow\)AD là đường trung trực của BC
\(\Rightarrow\)H là ttrung điểm \(\Rightarrow HC=HB=\frac{1}{2}.BC=6cm\)
Tam giác ABC vuông tại H
\(\Rightarrow AH=\sqrt{AB^2-HB^2}=8cm\)
Tam giác ABD vuông tại B (chắn nửa đương tròn )
\(\Rightarrow AD=\frac{AB^2}{AH}=\frac{10^2}{8}=12,5cm\)
\(\Rightarrow R=\frac{1}{2}.AD=6,25cm\)
Vậy bán kính của đườn tròn là : \(6,25cm\)
Chúc bạn học tốt !!!
a) Xét ΔOAB có OA=OB(=R)
nên ΔOAB cân tại O(Định nghĩa tam giác cân)
Ta có: ΔOAB cân tại O(cmt)
mà OC là đường cao ứng với cạnh đáy AB(OH⊥AB, C∈OH)
nên OC là đường phân giác ứng với cạnh AB(Định lí tam giác cân)
⇒\(\widehat{AOC}=\widehat{BOC}\)
Xét ΔAOC và ΔBOC có
OA=OB(=R)
\(\widehat{AOC}=\widehat{BOC}\)(cmt)
OC chung
Do đó: ΔAOC=ΔBOC(c-g-c)
⇒\(\widehat{OAC}=\widehat{OBC}\)(hai góc tương ứng)
mà \(\widehat{OAC}=90^0\)(CA là tiếp tuyến của (O) có A là tiếp điểm)
nên \(\widehat{OBC}=90^0\)
hay CB⊥OB tại B
Xét (O) có
OB là bán kính
CB⊥OB tại B(cmt)
Do đó: CB là tiếp tuyến của (O)(Dấu hiệu nhận biết tiếp tuyến đường tròn)
b) Xét (O) có
OH là một phần đường kính
AB là dây
OH⊥AB tại H(gt)
Do đó: H là trung điểm của AB(Định lí đường kính vuông góc với dây)
⇒\(BH=\dfrac{AB}{2}=\dfrac{24}{2}=12cm\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔOBC vuông tại B có BH là đường cao ứng với cạnh huyền OC, ta được:
\(\dfrac{1}{BH^2}=\dfrac{1}{BC^2}+\dfrac{1}{BO^2}\)
\(\Leftrightarrow\dfrac{1}{12^2}=\dfrac{1}{BC^2}+\dfrac{1}{20^2}\)
\(\Leftrightarrow\dfrac{1}{BC^2}=\dfrac{1}{12^2}-\dfrac{1}{20^2}=\dfrac{1}{144}-\dfrac{1}{400}=\dfrac{1}{225}\)
\(\Leftrightarrow BC^2=225\)
hay BC=15(cm)
Áp dụng định lí Pytago vào ΔOBC vuông tại B, ta được:
\(OC^2=OB^2+BC^2\)
\(\Leftrightarrow OC^2=15^2+20^2=625\)
hay OC=25(cm)
Vậy: OC=25cm
a) MC = 4 cm ; MD = 12cm
⇒ CD = MC + MD = 16 ( cm )
Ta có: △ OCD cân tại O ; OH là đường cao
⇒ OH đồng thời là đường trung tuyến
⇒ H là trung điểm CD
⇒ CH = HD = 8cm
⇒ MH = CH - MC = 8 - 4 = 4cm
b) Tam giác OMH vuông tại H có góc M = \(30^0\)
⇒ OH = MH . \(tan30^0\) = \(4.\dfrac{1}{\sqrt{3}}=\dfrac{4\sqrt{3}}{3}\) \(\left(cm\right)\)
Ta có: MN là đường kính \(\left(O;R\right)\)
\(\Rightarrow R=OM=\dfrac{1}{2}MN=\dfrac{1}{2}.6=3\left(cm\right)\)
Vì OH vuông với AB => H là trung điểm
=> AH = HB = AB/2 = 12/2 = 6 cm
Theo định lí Pytago tam giác AHO vuông tại H ta được :
\(AO=\sqrt{AH^2+OH^2}=\sqrt{64+36}=10\)cm
hay R = 10 cm