Chứng minh:
-y^2018 - x^2 + x -1 < 0 với mọi x, y
CÁC BN ƠI GIÚP MIK VỚI MIK CẦN GẤP LẮM Ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 3.2x+1-2=94
B, (3x-1)3=125
C, 2x+2x+1+...........+2x+99=2100-1
. là dấu nhân
MIK CẦN GẤP
HELP!!!!!!!!!!!!!!!!!!!!!!!!!!
\(\hept{\begin{cases}x-\left(y+z\right)=\frac{-1}{12}\\y-\left(x+z\right)=\frac{-1}{2}\\z-\left(x+y\right)=\frac{-7}{12}\end{cases}}\)
\(\Leftrightarrow-\left(x+y+z\right)=\frac{-7}{6}\)
\(\Leftrightarrow\hept{\begin{cases}-\left(x+y\right)=z-\frac{7}{6}\\-\left(x+z\right)=y-\frac{7}{6}\\-\left(y+z\right)=x-\frac{7}{6}\end{cases}}\)
Thay vô tinh tiếp, đc chứ??
11)\(\dfrac{3x+1}{x-5}+\dfrac{2x}{x-5}=\dfrac{3x+2x+1}{x-5}=\dfrac{5x+1}{x-5}\)
12)\(\dfrac{4-x^2}{x-3}+\dfrac{2}{x^2-9}=\dfrac{4-x^2}{x-3}+\dfrac{2}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(4-x^2\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{2}{\left(x-3\right)\left(x+3\right)}=\dfrac{2+\left(2-x\right)\left(2+x\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)
13)
\(\dfrac{3}{4x-2}+\dfrac{2x}{4x^2-1}=\dfrac{3}{2\left(2x-1\right)}+\dfrac{2x}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{3\left(2x+1\right)}{2\left(2x-1\right)\left(2x+1\right)}+\dfrac{2.2x}{2\left(2x-1\right)\left(2x+1\right)}=\dfrac{6x+3+4x}{2\left(2x-1\right)\left(2x+1\right)}=\dfrac{10x+3}{2\left(2x-1\right)\left(2x+1\right)}\)
14)
\(\dfrac{2x+1}{2x-4}+\dfrac{5}{x^2-4}=\dfrac{2x+1}{2\left(x-2\right)}+\dfrac{5}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(2x+1\right)\left(x+2\right)}{2\left(x-2\right)\left(x+2\right)}+\dfrac{5.2}{2\left(x-2\right)\left(x+2\right)}=\dfrac{2x^2+5x+12}{2\left(x-2\right)\left(x+2\right)}\)
\(\left(x+1\right)^2+\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+1\right)^2=0\\\left(x^2+1\right)=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-1\\x^2=-1\end{cases}\Leftrightarrow}x=-1}\)
Vậy x=-1
Bạn ơi chứng minh nhỏ hơn hoặc bằng 0 nhé
\(=-y^{2018}-\left(x^2-x+1\right)\)
\(=-y^{2018}-\left(x+1\right)^2\)
Vì \(\hept{\begin{cases}-y^{2018}\le0;\forall x,y\\-\left(x+1\right)^2\le0;\forall x,y\end{cases}}\)
\(\Rightarrow-y^{2018}-\left(x+1\right)^2\le0;\forall x,y\left(đpcm\right)\)