Cho đa thức f(x)=ax2- bx+c với a,b,c là các số nguyên và a khác 0 sao cho f(9) chia hết cho 5 và f(5) chia hết cho 9. Chứng minh rằng f(104) chia hết cho 45
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng công thức: (m – n). ( m+ n) = m2 – n2 => m2 – n2 chia hết (m – n)
Ta có : f(x)=ax2- bx + c
=> Tính chất: f (m) – f(n) chia hết ( m – n)
Ta có:
f(104) – f(9) chia hết 105
=> f(104) – f(9) chia hết 5
=> f(104) chia hết 5
Mặt khác:
f(104) – f(5) chia hết 99
=> f(104) – f(5) chia hết 9
=> f(104) chia hết 9
Vậy f(104) chia hết (5.9) = 45
Áp dụng công thức: (m – n). ( m+ n) = m2 – n2 => m2 – n2 chia hết (m – n)
Ta có : f(x)=ax2- bx + c
=> Tính chất: f (m) – f(n) chia hết ( m – n)
Ta có:
f(104) – f(9) chia hết 105
=> f(104) – f(9) chia hết 5
=> f(104) chia hết 5
Mặt khác:
f(104) – f(5) chia hết 99
=> f(104) – f(5) chia hết 9
=> f(104) chia hết 9
Vậy f(104) chia hết (5.9) = 45
f(5)=25a+5b+c chia hết cho 9;f(9)=81a+9b+c chia hết cho 5
ta có:f(104)=10816a+104b+c=(81a+9b+c)+(10735a+95b) chia hết cho 5
=(25a+5b+c)+(10791a+99b) chia hết cho 9
Mà (5,9)=1
Nên f(104) chia hết cho 45(đpcm)
\(f\left(0\right)=c⋮3\) ;
\(f\left(1\right)=a+b+c⋮3\) mà \(c⋮3\Rightarrow a+b⋮3\)
\(f\left(-1\right)=a-b+c=-2b+\left(a+b+c\right)⋮3\) mà \(a+b+c⋮3\Rightarrow-2b⋮3\Rightarrow b⋮3\) (do 2 và 3 nguyên tố cùng nhau)
\(\left\{{}\begin{matrix}a+b+c⋮3\\b⋮3\\c⋮3\end{matrix}\right.\) \(\Rightarrow a⋮3\)
Áp dụng công thức: (m – n). ( m+ n) = m2 – n2 => m2 – n2 \(⋮\) (m – n)
Ta có : f(x)=ax2-bx+c
=> Tính chất: f (m) – f(n) \(⋮\) ( m – n)
Ta có:
f(104) – f(9) \(⋮\)105
=> f(104) – f(9) \(⋮\)5
=> f(104) \(⋮\)5
Mặt khác:
f(104) – f(5) \(⋮\)99
=> f(104) – f(5) \(⋮\)9
=> f(104) \(⋮\)9
Vậy f(104) \(⋮\)(5.9) = 45
tự hỏi tự trả lời là sao vậy bạn