Cho x,y >0 . Tìm GTNN của bt
A=\(\frac{x}{y}\) +\(\frac{y}{x}\) + \(\frac{xy}{x^2+y^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
b/
\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)
\(=16+8+20=44\)
\(\Rightarrow B\ge11\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
Từ BĐT \(\left(x+y\right)^2\ge4xy\) ta suy ra \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) và \(\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)
Ta có : \(P=\frac{20}{x^2+y^2}+\frac{11}{xy}=20\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{xy}\ge20.\frac{4}{\left(x+y\right)^2}+\frac{4}{\left(x+y\right)^2}\ge\frac{80}{4}+\frac{4}{4}=21\)
Dấu "=" xảy ra khi x = y = 1
Vậy Min P = 21 khi x = y = 1
Ta có :
\(P=\frac{20}{x^2+y^2}+\frac{11}{xy}\)
\(=20.\left[\frac{1}{x^2+y^2}+\frac{1}{2xy}\right]+\frac{1}{xy}\)
\(\ge20\cdot\frac{4}{x^2+y^2+2xy}+\frac{4}{\left(x+y\right)^2}\)
\(\ge20\cdot\frac{4}{2^2}+\frac{4}{2^2}=21\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=1\)
Vậy \(P_{min}=21\) khi \(x=y=1\)
Ta có:
\(P=20\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{xy}\)
\(\ge20\cdot\frac{4}{\left(x+y\right)^2}+\frac{4}{\left(x+y\right)^2}\ge21\)
\(\Rightarrow P\ge21\)
Dấu = khi x=y=1
@AZM: Thật không may dấu "=" không xảy ra bạn nhé :))
Ta có:\(S=\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}=\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}\)
Đặt \(a=\frac{x^2+y^2}{xy}\ge\frac{2\sqrt{x^2y^2}}{xy}=2\)
Khi đó:\(S=a+\frac{1}{a}=\left(\frac{a}{4}+\frac{1}{a}\right)+\frac{3a}{4}\ge2\sqrt{\frac{a}{4}\cdot\frac{1}{a}}+\frac{3\cdot2}{4}=\frac{5}{2}\)
Đẳng thức xảy ra tại x=y
Bài làm:
Ta có: \(\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}=\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}\ge2\sqrt{\frac{\left(x^2+y^2\right)}{xy}.\frac{xy}{\left(x^2+y^2\right)}}=2.1=2\)
Dấu "=" xảy ra khi: \(x=y\)
Vậy GTNN biểu thức là 2 khi \(x=y\)
Học tốt!!!!
1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)
\(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)
max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)
\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t
Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+2=\frac{4}{\left(x+y\right)^2}+2=6\)
Dấu "=" xảy ra khio x=y=1/2
\(A=\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}=\frac{3\left(x^2+y^2\right)}{4xy}+\frac{x^2+y^2}{4xy}+\frac{xy}{x^2+y^2}\)
\(A\ge\frac{3\left(x^2+y^2\right)}{2\left(x^2+y^2\right)}+2\sqrt{\frac{\left(x^2+y^2\right)xy}{4xy\left(x^2+y^2\right)}}=\frac{3}{2}+1=\frac{5}{2}\)
\(A_{min}=\frac{5}{2}\) khi \(x=y\)
Cách làm này hình như có chỗ chưa hợp lý