cho đường thẳng d có phương trình y=mx+2-m(n+1) với m,n là các tham số. biết khi m thay đổi thì d luôn đi qua 1 điểm cố định có khoảng cách đến trục tung bằng 1 . tìm giá trị cuả n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Điểm mà (d) luôn đi qua là:
x=0 và y=m*0-3=-3
b: góc BAO=60 độ
=>góc tạo bởi (d) với trục Ox bằng60 độ
=>\(m=tan60=\sqrt{3}\)
c: y=mx-3
=>mx-y-3=0
\(d\left(O;d\right)=\dfrac{\left|0\cdot m+0\cdot\left(-1\right)-3\right|}{\sqrt{m^2+1}}=\dfrac{3}{\sqrt{m^2+1}}\)
Để d lớn nhất thì m^2+1 nhỏ nhất
=>m=0
a giải thích câu a chi tiết thêm 1 tí đc k ạ, e vẫn chưa hiểu lắm a ạ, e cảm ơn
Gọi \(A\left(x;y\right)\) là điểm cố định mà (d) luôn đi qua
\(\Rightarrow y=2mx+m+1\Rightarrow2mx+m+1-y=0\)
Vì khi m thay đổi thì (d) vẫn đi qua điểm A \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=m+1\end{matrix}\right.\)
\(\Rightarrow\) (d) luôn đi qua điểm \(A\left(0,m+1\right)\)
Đề sai rồi bn
Không có phương trình đường thẳng nào có phương trình là :
\(\left(2m+3\right)+\left(m+5\right)+\left(4m-1\right)=0\) cả , thiếu \(y\) và cả biến số \(x\)
_Minh ngụy _