K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2019

Áp dụng BĐT Cauchy - Schwarz ta có  :

\(VT=\frac{1}{\sqrt{a}}+\frac{3}{\sqrt{b}}+\frac{8}{\sqrt{3c+2a}}\)

\(=\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{2}{\sqrt{b}}+\frac{8}{\sqrt{3c+2a}}\)

\(\ge\frac{4}{\sqrt{a}+\sqrt{b}}+\frac{2\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}\)

\(=\frac{4}{\sqrt{a}+\sqrt{b}}+\frac{\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}+\frac{\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}\)

\(\ge\frac{\left(1+2+1+2+2\right)^2}{2\sqrt{3c+2a}+3\sqrt{b}+\sqrt{a}}\)

\(\ge\frac{64}{\sqrt{\left(1+2^2+3\right)\left(a+2a+3c+3b\right)}}\)

\(=\frac{64}{\sqrt{24\left(a+c+b\right)}}=\frac{16\sqrt{2}}{\sqrt{3\left(a+b+c\right)}}=VF\)

Chúc bạn học tốt !!!

11 tháng 8 2020

Mình nghĩ là: 

a = 1

b = 2

c = 4

29 tháng 12 2019

Áp dụng bất đẳng thức Cauchy ta có :

\(VT=\frac{1}{\sqrt{a}}+\frac{3}{\sqrt{b}}+\frac{8}{\sqrt{3c+2a}}\)

\(=\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{2}{\sqrt{b}}+\frac{8}{\sqrt{3c+2a}}\)

\(\ge\frac{4}{\sqrt{a}+\sqrt{b}}+\frac{2\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}\)

\(=\frac{4}{\sqrt{a}+\sqrt{b}}+\frac{\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}+\frac{\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}\)

\(\ge\frac{\left(1+2+1+2+2\right)^2}{2\sqrt{3c+2a}+3\sqrt{b}+\sqrt{a}}\)

\(\ge\frac{64}{\sqrt{\left(1+2^2+3\right)\left(a+2a+3c+3b\right)}}\)

\(=\frac{64}{\sqrt{24\left(a+c+b\right)}}=\frac{16\sqrt{2}}{\sqrt{3\left(a+b+c\right)}}=VP\)

8 tháng 1 2020

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)

\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)

\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)

\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)

Từ ( 1 ) và ( 2 ) có đpcm

19 tháng 5 2017

ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho

9 tháng 8 2020

gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

=> Thay vào thì     \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)

\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)

Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào

=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)

=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)

=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\) 

12 tháng 1 2020

Sai đề ở vế phải. Cái này tôi làm rồi nên biết:  819598 (học 24)

BDT cần cm tương đương

\(\frac{\left(2+6a+3b+6\sqrt{2bc}\right)\left(\sqrt{2b^2+2\left(a+c\right)^2}+3\right)}{2a+b+2\sqrt{2bc}}\ge16\)

Áp dụng bdt C-S và AM-GM:

\(VT=\frac{\left(2+6a+3b+6\sqrt{2bc}\right)\left(\sqrt{2b^2+2\left(a+c\right)^2}+3\right)}{2a+b+2\sqrt{2bc}}\)

\(=\left(\frac{2}{2a+b+2\sqrt{2bc}}+3\right)\left(\sqrt{2\left(b^2+\left(a+c\right)^2\right)}+3\right)\)

\(\ge\left(\sqrt{2\cdot\frac{\left(a+b+c\right)^2}{2}}+3\right)\left(\frac{2}{2a+b+b+2c}+3\right)\)

\(=\left(a+b+c+3\right)\left(\frac{1}{a+b+c}+3\right)\)

\(\ge\left(3+1\right)^2=16=VP\)

dau '=' khi a+b+c=1, b=a+c, 2c=b bn tự giải not

13 tháng 1 2020

Chuyên toán Vĩnh Phúc đây mà :) Em chụp lại nha,chớ e mà viết ra nhiều người nhảy vào cà khịa ghê lắm:(

AH
Akai Haruma
Giáo viên
31 tháng 7 2019

Lời giải:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2\sqrt[3]{abc}}=\frac{c^2}{c^2(a+b)}+\frac{a^2}{a^2(b+c)}+\frac{b^2}{b^2(c+a)}+\frac{(\sqrt[3]{abc})^2}{2abc}\)

\(\geq \frac{(c+a+b+\sqrt[3]{abc})^2}{c^2(a+b)+a^2(b+c)+b^2(c+a)+2abc}=\frac{(a+b+c+\sqrt[3]{abc})^2}{(a+b)(b+c)(c+a)}\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c$