Cho tam giác ABC trên cạnh AC lấy 2 điểm D và E sao cho AD=DE=EC. Gọi M là trung điểm BC. AM cắt BD ở I . Chứng minh
a) ME// BD
b) I là trung điểm của AM
c) Tính tỉ số ID trên BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác BDC có:
M là trung điểm BC(gt)
E là trung điểm DC(DE=EC)
=> ME là đường trung bình
=> ME//BD
b) Xét tam giác AME có:
ME//BD
D là trung điểm AE(AD=DE)
=> I là trung điểm AM
c) Xét tam giác AME có:
D là trung điểm AE(AD=DE)
I là trung điểm AM(cmt)
=> ID là đường trung bình
\(\Rightarrow ID=\dfrac{1}{2}ME\)
Mà \(ME=\dfrac{1}{2}BD\)(do ME là đường trung bình tam giác BDC)
\(\Rightarrow ID=\dfrac{1}{2}.\dfrac{1}{2}BD=\dfrac{1}{4}BD\)
Hình bn tự vẽ nhé
a, Do E, M lần lượt là trung điểm của DC, BC
=> EM là đường trung bình trong \(\Delta\)BDC
=> EM // BD
b, Trong \(\Delta\)AEM có:
D là trung điểm của AE
DI // EM ( I thuộc DB )
=> ID là đường TB trong \(\Delta\)AEM
=> I là trung điểm của AM
c, ID đường TB trong \(\Delta\)AEM
=> ID = 1/2.EM
Mà EM=1/2.BD (do EM là đường TB trong \(\Delta\)DBC )
=> ID = 1/4.BD
a,E là trung điểm DC, M là trung điểm BC =>ME//BD
b, BD//ME => ID//ME => I là trung điểm của AM
c, ID=1/2ME, ME=1/2BD => ID=1/4BD