Tính x+y+z nếu :
\(\frac{19}{x+y}+\frac{19}{y+z}+\frac{19}{z+x}=\frac{7x}{y+z}+\frac{7y}{x+y}+\frac{7z}{x+y}=\frac{133}{10}\)\(\frac{133}{10}\)
Cần Câu TL rõ Ràng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình là chủ nhân của câu hỏi này lên các bạn hãy bỏ một phân số 133phaanf 10 ra ngoài
19(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}) = 7+\frac{7x}{y+z}+7+\frac{7y}{z+x}+7+\frac{7z}{z+y} - 21 \\ \\ 19(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}) = \frac{7(x+y+z)}{x+y}+\frac{7(x+y+z)}{y+z}+\frac{7(z+y+z)}{x+z} - 21 \\ \\ 19(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}) = 7(x+y+z).(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}) - 21 \\ \\ \frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z} = t \\ \\ \Rightarrow 19t = 7(x+y+z).t -21 = \frac{133}{10} \\ \\ 19t = \frac{133}{10} \Rightarrow t = \frac{7}{10} \\ \\ \Rightarrow 7(x+y+z).\frac{7}{10} -21 = \frac{133}{10} \Rightarrow M = x+y+z = 7
Lời giải:
Ta có: \(\frac{19}{x+y}+\frac{19}{y+z}+\frac{19}{z+x}=\frac{133}{10}\)
\(\Rightarrow \frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=\frac{7}{10}(*)\)
Lại có:
\(\frac{7x}{y+z}+\frac{7y}{z+x}+\frac{7z}{x+y}=\frac{133}{10}\)
\(\Rightarrow \frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\frac{19}{10}\)
\(\Rightarrow \frac{x}{y+z}+1+\frac{y}{z+x}+1+\frac{z}{x+y}+1=\frac{19}{10}+3=\frac{49}{10}\)
\(\Leftrightarrow \frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{x+y}=\frac{49}{10}\)
\(\Leftrightarrow (x+y+z)\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{49}{10}(**)\)
Từ \((*);(**)\Rightarrow M=x+y+z=7\)
\(\frac{19}{x+y}+\frac{19}{y+z}+\frac{19}{z+x}=\frac{133}{10}\)
\(\Rightarrow19\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{133}{10}\)
\(\Rightarrow\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{7}{10}\)
\(\frac{7x}{y+z}+\frac{7y}{z+x}+\frac{7z}{x+y}=\frac{133}{10}\)
\(\Rightarrow7\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)=\frac{133}{10}\)
\(\Rightarrow\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)=\frac{19}{10}\)
\(\Rightarrow\left(\frac{x}{y+z}+1+\frac{y}{z+x}+1+\frac{z}{x+y}+1\right)=\frac{19}{10}+3\)
\(\Rightarrow\left(\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{x+y}\right)=\frac{49}{10}\)
\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\right)=\frac{49}{10}\)
\(\Rightarrow\left(x+y+z\right).\frac{7}{10}=\frac{49}{10}\)
\(\Rightarrow x+y+z=7\)
Vậy x + y + z = 7