K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2019

Áp dụng bđt bunhiacopski có:

\(\left(a^4+1\right)\left(1+4^2\right)\ge\left(a^2+4\right)^2\)

=> \(\sqrt{a^4+1}\ge\sqrt{\frac{\left(a^2+4\right)^2}{1+4^2}}=\frac{a^2+4}{\sqrt{17}}\)(1)

Tương tự cx có: \(\sqrt{b^4+1}\ge\frac{b^2+4}{\sqrt{17}}\) (2)

Từ (1),(2) => \(F\ge\frac{a^2+b^2+8}{\sqrt{17}}\)

Có (a+2)(b+2)=\(\frac{25}{4}\)

=> \(ab+2a+2b+4=\frac{25}{4}\) <=> \(ab+2a+2b=\frac{9}{4}\)

Áp dụng cosi có:

\(ab\le\frac{a^2+b^2}{2}\)

\(2a\le2\left(a^2+\frac{1}{4}\right)\)

\(2b\le2\left(b^2+\frac{1}{4}\right)\)

=> \(\frac{a^2+b^2}{2}+2a^2+\frac{1}{2}+2b^2+\frac{1}{2}\ge ab+2a+2b=\frac{9}{4}\)

<=> \(\frac{a^2+b^2+4a^2+4b^2}{2}\ge\frac{9}{4}-\frac{1}{2}-\frac{1}{2}=\frac{5}{4}\)

<=> \(\frac{5\left(a^2+b^2\right)}{2}\ge\frac{5}{4}\)

<=> \(a^2+b^2\ge\frac{1}{2}\)

Thay \(a^2+b^2\ge\frac{1}{2}\) vào F có:

\(F\ge\frac{\frac{1}{2}+8}{\sqrt{17}}\)

<=> F \(\ge\frac{\sqrt{17}}{2}\)

Dấu "=" xảy ra <=>\(a=b=\frac{1}{2}\)

17 tháng 1 2022

a) \(A=4\sqrt{x^2+1}-2\sqrt{16\left(x^2+1\right)}+5\sqrt{25\left(x^2+1\right).}\)

\(=4\sqrt{x^2+1}-2.4\sqrt{x^2+1}+5.5\sqrt{x^2+1}\)

\(=4\sqrt{x^2+1}-8\sqrt{x^2+1}+25\sqrt{x^2+1}\)

\(=\left(4-8+25\right)\sqrt{x^2+1}\)

\(=21\sqrt{x^2+1}\)

17 tháng 1 2022

b) \(B=\frac{2}{x+y}\sqrt{\frac{3\left(x+y\right)^2}{4}}\)

\(B=\frac{2}{x+y}.\frac{\sqrt{3}\left(x+y\right)}{2}\)

\(B=\frac{\sqrt{3}\left(x+y\right)}{x+y}\)

\(B=\sqrt{3}\)

27 tháng 12 2021

a) ĐKXĐ : \(3\le x\le7\)

Ta có \(A=1.\sqrt{x-3}+1.\sqrt{7-x}\)

\(\le\sqrt{\left(1+1\right)\left(x-3+7-x\right)}=\sqrt{8}\)(BĐT Bunyacovski)

Dấu "=" xảy ra <=> \(\dfrac{1}{\sqrt{x-3}}=\dfrac{1}{\sqrt{7-x}}\Leftrightarrow x=5\)

 

27 tháng 12 2021

Max và min chứ có ngu đến mức k bt lm cái đó đâu

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Bài 1:

\(A=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}=\sqrt{2+3-2\sqrt{2.3}}+\sqrt{2+3+2\sqrt{2.3}}\)

\(=\sqrt{(\sqrt{2}-\sqrt{3})^2}+\sqrt{\sqrt{2}+\sqrt{3})^2}\)

\(=|\sqrt{2}-\sqrt{3}|+|\sqrt{2}+\sqrt{3}|=\sqrt{3}-\sqrt{2}+\sqrt{2}+\sqrt{3}=2\sqrt{3}\)

\(B=(\sqrt{10}+\sqrt{6})\sqrt{8-2\sqrt{15}}\)

\(=(\sqrt{10}+\sqrt{6}).\sqrt{3+5-2\sqrt{3.5}}\)

\(=(\sqrt{10}+\sqrt{6})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)

\(=\sqrt{2}(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})=\sqrt{2}(5-3)=2\sqrt{2}\)

\(C=\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\)

\(C^2=8+2\sqrt{(4+\sqrt{7})(4-\sqrt{7})}=8+2\sqrt{4^2-7}=8+2.3=14\)

\(\Rightarrow C=\sqrt{14}\)

\(D=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{2}\sqrt{3-\sqrt{5}}\)

\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{6-2\sqrt{5}}\)

\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{5+1-2\sqrt{5.1}}\)

\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{(\sqrt{5}-1)^2}\)

\(=(3+\sqrt{5})(\sqrt{5}-1)^2=(3+\sqrt{5})(6-2\sqrt{5})=2(3+\sqrt{5})(3-\sqrt{5})=2(3^2-5)=8\)

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Bài 2:

a) Bạn xem lại đề.

b) \(x-2\sqrt{xy}+y=(\sqrt{x})^2-2\sqrt{x}.\sqrt{y}+(\sqrt{y})^2=(\sqrt{x}-\sqrt{y})^2\)

c)

\(\sqrt{xy}+2\sqrt{x}-3\sqrt{y}-6=(\sqrt{x}.\sqrt{y}+2\sqrt{x})-(3\sqrt{y}+6)\)

\(=\sqrt{x}(\sqrt{y}+2)-3(\sqrt{y}+2)=(\sqrt{x}-3)(\sqrt{y}+2)\)

2 tháng 4 2016

\(g\left(x\right)=0\Leftrightarrow x=-\sqrt{7-4\sqrt{3}}=-\sqrt{\left(2-\sqrt{3}\right)^2}=\sqrt{3}-2\)

\(g\left(\sqrt{3}-2\right)=0\Rightarrow f\left(\sqrt{3}-2\right)=0\)

\(\Rightarrow7-4\sqrt{3}-4ab\left(\sqrt{3}-2\right)+2a+3=0\)

\(\Leftrightarrow\sqrt{3}\left(-4-4ab\right)+\left(8ab+2a+10\right)=0\text{ }\left(1\right)\)

Do a, b là các số hữu tỉ nên (1) đúng khi và chỉ khi

\(\int^{-4-4ab=0}_{8ab+2a+10=0}\Leftrightarrow\int^{a=-1}_{b=1}\)

Vậy, \(a=-1;\text{ }b=1.\)

2 tháng 4 2016

f(x) chia hết cho g(x)

Nếu g(x) =0 hay x = - \(\sqrt{7-4\sqrt{3}}=1-\sqrt{6}\)

=> f( \(1-\sqrt{6}\)) =0

=> \(\left(1-\sqrt{6}\right)^2-4ab\left(1-\sqrt{6}\right)+2a+3=0\)(1)

Cái thứ (2) sử dụng cái gì vậy??? chỉ mình với?