chứng minh 100 . ( 3^2019 + 3^2018 +...+ 3^2 + 3 + 1 ) + 50 chia hết cho 150. giúp mình với :>
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Vì 4 chia 3 dư 1
=>4^2018 chia 3 dư 1^2018=1
=>462018-1 chia hết cho 3
b)Ta có:
5^2019=(5^2)^1009*5
=25^1009*5
=...25*5
=...25
=>5^2019-1=...24
Vì 2 cs tận cùng của ...24 là 24 chia hết cho 4
=>5^2019-1 chia hết cho 4
Vậy......
Ta có:
\(4^{2018}-1=4^{2018}-4^{2017}+4^{2017}-4^{2016}+4^{2016}-4^{2015}+...+4-1\)
\(=4^{2017}\left(4-1\right)+4^{2016}\left(4-1\right)+4^{2015}\left(4-1\right)+...+1.\left(4-1\right)\)
\(=\left(4-1\right)\left(4^{2017}+4^{2016}+4^{2015}+...+1\right)=3\left(4^{2017}+4^{2016}+4^{2015}+...+1\right)⋮3\)
Vậy \(4^{2018}-1⋮3\)
Chứng minh tương tự \(5^{2019}-1⋮4\)
Lời giải:
\(P=3+3^2+3^3+...+3^{2018}+3^{2019}\)
\(P=(1+3+3^2+3^3)+(3^4+3^5+3^6+3^7)+....+(3^{2016}+3^{2017}+3^{2018}+3^{2019})-1\)
\(=(1+3+3^2+3^3)+3^4(1+3+3^2+3^3)+....+3^{2016}(1+3+3^2+3^3)-1\)
\(=(1+3+3^2+3^3)(1+3^4+...+3^{2016})-1\)
\(=40(1+3^4+...+3^{2016})-1\)
\(=5.8(1+3^4+...+3^{2016})-5+4\)
\(=5[8(1+3^4+...+3^{2016})-1]+4\)
Vậy $P$ chia $5$ dư $4$ chứ không phải $P$ chia hết cho $5$
Sửa đề: P=1+3+3^2+...+3^2018+3^2019
=(1+3+3^2+3^3)+3^4(1+3+3^2+3^3)+...+3^2016(1+3+3^2+3^3)
=40(1+3^4+...+3^2016) chia hết cho 5
Bài 1 : Ta có : S = 1 + 2 + 22 + 23 + ... + 29
2S = 2(1 + 2 + 22 + 23 + ... + 29)
2S = 2 + 22 + 23 + ... + 210
2S - S = (2 + 22 + 23 + ... + 210) - (1 + 2 + 22 + 23 + ... + 29)
S = 210 - 1 = 28.4 - 1
Vậy S < 5 x 28
M=[ 1+1/2018 +1/2 +1/2017 +1/3 +1/2016 +........+1/1009 +1/1010] .2.3.4...2018
M=[2019/2018 =2019/2.2017 +2019/3.2016 +....+2019/1009.1010].2.3.....2018
M.=2019.[1/2018 +1/2.2017 +.....+1/1009.1010] .2.3....2018 chia het cho 2019
suy ra M chia het cho2019
vay M chia het cho2019