K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)

Lấy K làm trung điểm của BC

=> MK là đường trung bình của hình thang ABCD

\(\Rightarrow MK=\frac{AB+CD}{2}\)(*)

Tam giác MBC vuông tại M, MK là trung tuyến

\(\Rightarrow MK=\frac{BC}{2}\)(**)

Từ (*) và (**) => AB + CD = BC

b)

Ta có:

\(\widehat{HMC}=\widehat{MBC}=\widehat{KBM}\)

\(\widehat{KMB}=\widehat{KBM}\)

\(\widehat{KMB}=\widehat{DMC}\)

\(\Rightarrow\widehat{HMC}=\widehat{DCM}\)

Ta có:

\(\widehat{HMC}=\widehat{DCM}\)

\(\widehat{MDC}=\widehat{MHC}=90^o\Rightarrow\Delta HMC=\Delta DMC\left(ch-gn\right)\)

\(MC\)chung \(\Rightarrow MH=MD;CH=CD\)

=> MC là đường trung trực của DH => \(MC\perp DH\)và \(MB\perp MC\)

\(\Rightarrow DH//MB\Rightarrow MBHD\)là hình thang

A B E D C M H

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thangBài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang

Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:

a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông 

Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB

Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF 

Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:

a) AE vuông góc với DB

b) AD // BE và AD = BE

c) E là trung điểm của DC 

d) Xác định dạng của tứ giác BCEO

e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD 

1

Bài 4:

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C

Do đó: ΔAED=ΔBFC

=>DE=CF
Bài 3:

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

=>góc ACD=góc BDC

b: Ta co: góc ACD=góc BDC

=>góc EAB=góc EBA
=>ΔEAB cân tại E

1: Xét tứ giác ADME co

góc ADM=góc AEM=góc DAE=90 độ

nên ADME là hình chữ nhật

Xét ΔABC có

DM//AC

nên DM/AC=BD/BA=BM/BC

=>D là trung điểm của BA

Xét ΔABC có ME//AB

nên ME/AB=CM/CB=CE/CA=1/2

=>E là trung điểm của AC

=>EM//BD và EM=BD

=>BMED là hình bình hành

Xét tứ giác DMCE có

DM//CE

DM=CE

Do đó: DMCE là hình bình hành

2: \(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)

AD=AB/2=3cm

AE=AC/2=4cm

\(S_{ADME}=3\cdot4=12\left(cm^2\right)\)

3: ΔHAC vuông tại H

mà HE là trung tuyến

nên HE=AC/2=MD

Xét ΔABC có AD/AB=AE/AC

nên DE//BC

Xét tứ giác DHME có

DE//MH

MD=HE

Do đo: DHME là hình thang cân

30 tháng 8 2019

Câu hỏi của Hồ Phong Thư - Toán lớp 8 - Học toán với OnlineMath