K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 9 2019

\(\Leftrightarrow2\left(cos^2x-sin^2x\right)+\left(sinx.cosx-1\right)\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(2\left(cosx-sinx\right)+sinx.cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\\2\left(cosx-sinx\right)+sinx.cosx-1=0\end{matrix}\right.\)

TH1: \(sinx+cosx=0\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=0\)

\(\Rightarrow x=-\frac{\pi}{4}+k\pi\)

TH2: \(2\left(cosx-sinx\right)+sinx.cosx-1=0\)

Đặt \(cosx-sinx=-\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=a\) (\(\left|a\right|\le\sqrt{2}\))

\(\Rightarrow a^2=1-2sinx.cosx\Rightarrow sinx.cosx=\frac{1-a^2}{2}\)

\(2a+\frac{1-a^2}{2}-1=0\)

\(\Leftrightarrow a^2-4a+1=0\Rightarrow\left[{}\begin{matrix}a=2+\sqrt{3}\left(l\right)\\a=2-\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow-\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=2-\sqrt{3}\)

\(\Rightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{3}-2}{\sqrt{2}}=sin\alpha\)

\(\Rightarrow...\)

Nghiệm thứ 2 xấu vậy, bạn có ghi đề nhầm chỗ nào ko nhỉ?

10 tháng 12 2019

Giải phương trình hộ mình với

22 tháng 10 2019

1   +   sin x   -   cos x   -   sin 2 x   +   2 cos 2 x   =   0   ( 1 )     T a   c ó :     1   -   sin 2 x   =   sin x   -   cos x 2     ⇔   2 cos 2 x   =   2 ( cos 2 x   -   sin 2 x )   =   - 2 ( sin x   -   cos x ) ( sin x   +   cos x )     V ậ y   ( 1 )   ⇔   ( sin x   -   cos x ) ( 1   +   sin x   -   cos x   -   2 sin x   -   2 cos x )   =   0     ⇔   ( sin x   -   cos x ) ( 1   -   sin x   -   3 cos x )   =   0

Giải sách bài tập Toán 11 | Giải sbt Toán 11

III. Phương trình bậc nhất đối với sinx và cosx:*Giải các phương trình bậc nhất đối với sinx và cosx sau...
Đọc tiếp

III. Phương trình bậc nhất đối với sinx và cosx:

*Giải các phương trình bậc nhất đối với sinx và cosx sau đây:

(2.1)

1) \(2sinx-2cosx=\sqrt{2}\)

2) \(cosx-\sqrt{3}sinx=1\)

3) \(\sqrt{3}sin\dfrac{x}{3}+cos\dfrac{x}{2}=\sqrt{2}\)

4) \(cosx-sinx=1\)

5) \(2cosx+2sinx=\sqrt{6}\)

6) \(sin3x+\sqrt{3}cosx=\sqrt{2}\)

7) \(3sinx-2cosx=2\)

(2.3)

1) \(\left(sinx-1\right)\left(1+cosx\right)=cos^2x\)

2) \(sin\left(\dfrac{\pi}{2}+2x\right)+\sqrt{3}sin\left(\pi-2x\right)=1\)

3) \(\sqrt{2}\left(cos^4x-sin^4x\right)=cosx+sinx\)

4) \(sin2x+cos2x=\sqrt{2}sin3x\)

5) \(sinx=\sqrt{2}sin5x-cosx\)

6) \(sin8x-cos6x=\sqrt{3}\left(sin6x+cos8x\right)\)

7) \(cos3x-sinx=\sqrt{3}\left(cosx-sin3x\right)\)

8) \(2sin^2x+\sqrt{3}sin2x=3\)

9) \(sin^4x+cos^4\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{4}\) 

(2.3)

1) \(\dfrac{\sqrt{3}\left(1-cos2x\right)}{2sinx}=cosx\)

2) \(cotx-tanx=\dfrac{cosx-sinx}{sinx.cosx}\)

3) \(\dfrac{\sqrt{3}}{cosx}+\dfrac{1}{sinx}=4\)

4) \(\dfrac{1+sinx}{1+cosx}=\dfrac{1}{2}\)

5) \(3cosx+4sinx+\dfrac{6}{3cosx+4sinx+1}=6\)

(2.4)

a) Tìm nghiệm \(x\in\left(\dfrac{2\pi}{5};\dfrac{6\pi}{7}\right)\) của phương trình \(cos7x-\sqrt{3}sin7x+\sqrt{2}=0\)

b) Tìm nghiệm \(x\in\left(0;\pi\right)\) của phương trình \(4sin^2\dfrac{x}{2}-\sqrt{3}cos2x=1+2cos^2\left(x-\dfrac{3\pi}{4}\right)\)

(2.5) Xác định tham số m để các phương trình sau đây có nghiệm:

a) \(mcosx-\left(m+1\right)sinx=m\)

b) \(\left(2m-1\right)sinx+\left(m-1\right)cosx=m-3\)

(2.6) Tìm GTLN, GTNN (nếu có) của các hàm số sau đây:

a) \(y=3sinx-4cosx+5\)

b) \(y=cos2x+sin2x-1\)

 

23
NV
30 tháng 7 2021

2.1

a.

\(\Leftrightarrow sinx-cosx=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{4}=\dfrac{\pi}{6}+k2\pi\\x-\dfrac{\pi}{4}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5\pi}{12}+k2\pi\\x=\dfrac{13\pi}{12}+k2\pi\end{matrix}\right.\)

NV
30 tháng 7 2021

b.

\(cosx-\sqrt{3}sinx=1\)

\(\Leftrightarrow\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx=\dfrac{1}{2}\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{3}=\dfrac{\pi}{3}+k2\pi\\x+\dfrac{\pi}{3}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=-\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)

NV
16 tháng 10 2020

1.

Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)

Pt trở thành:

\(t^3+\frac{t^2-1}{2}-1=0\)

\(\Leftrightarrow2t^3+t^2-3=0\)

\(\Leftrightarrow\left(t-1\right)\left(2t^2+3t+3\right)=0\)

\(\Leftrightarrow t=1\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
16 tháng 10 2020

4.

Đặt \(sinx-cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{1-t^2}{2}\end{matrix}\right.\)

Pt trở thành:

\(t^3=1+\frac{1-t^2}{2}\)

\(\Leftrightarrow2t^3+t^2-3=0\)

\(\Leftrightarrow\left(t-1\right)\left(2t^2+3t+3\right)=0\)

\(\Leftrightarrow t=1\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow...\)

7 tháng 8 2017

Chọn A

3 tháng 8 2018

Đáp án C

Nhận thấy cos x = 0 không phải là nghiệm của phương trình. Chia cả hai vế của phương trình cho cosx ta được

Vậy có 1 điểm biểu diễn nghiệm của phương trình trên đường tròn lượng giác.

21 tháng 6 2018

5 tháng 8 2019

Đáp án C

Nhận thấy cosx = 0 không phải là nghiệm của phương trình. Chia cả hai vế của phương trình cho cosx ta được

Vậy có 1 điểm biểu diễn nghiệm của phương trình trên đường tròn lượng giác.