Tìm min của A = x mũ 2 + 2y mũ 2 + 2xy +2x - 4y + 2020
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2+2y^2+2xy+2x-4y+2020\)
\(=\left(x^2+y^2+1+2x+2xy+2y\right)+\left(y^2-6y+9\right)+2010\)
\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2010\) \(\ge2010\)
Dấu = xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}y=3\\x+y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=-4\end{matrix}\right.\)
Vậy \(Min_A=2010\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=3\end{matrix}\right.\)
(1)
(x+1)(x-7)+17>0
<=>x^2-6x+9+1>0
<=>(x-3)^2+1>0(dpcm)
..
(7)
-y^2+4y-4-|x+1|≤0
<=>-(y-2)^2-|x+1|≤0
sum 2 so khong duong ko the la so (+)=>dpcm
1.(x+1)(x-7)+17=(x-3)2+1>0
2.-20-(x-5)(x+3)=-34-(x-1)2<0
3.-2(x+3)-(x-2)(x+2)=-(x+1)2-1<0
4.x2+y2+2x+2y+3=(x+1)2+(y+1)2+1>0
5.2x2+2x+y2+2y+5=2(x+1/2)2+(y+1)2+2>0
6.2x2+2y2+2xy+2x+4y+6=(x+y)2+(x+1)2+(y+2)2+1>0
7.-y2+4y-4-/x+1/=-(y-2)2-/x+1/≤0
a: \(A=2a^2b-8b^2+5a^2b+5c^2-3b^3+4c^2\)
\(=7a^2b-8b^2-3b^3+c^2\)
Bậc là 3
b: \(B=7x^2y+2xy+3-2y-2x^2y+xy\)
\(=5x^2y+3xy-2y+3\)
Bậc là 3
1: \(=-\left(x^2+2x+2\right)=-\left(x^2+2x+1+1\right)=-\left(x+1\right)^2-1< =-1\)
Dấu '=' xảy ra khi x=-1
2: \(=-\left(4x^2-12x-10\right)\)
\(=-\left(4x^2-12x+9-19\right)\)
\(=-\left(2x-3\right)^2+19< =19\)
Dấu '=' xảy ra khi x=3/2
3: \(=-\left(x^2+4x+4-4\right)=-\left(x+2\right)^2+4< =4\)
Dấu '=' xảy ra khi x=-2
\(A=x^2+2y^2+2xy+2x-4y+2020\)
\(=\left(x^2+y^2+1+2x+2xy+2y\right)+\left(y^2-6y+9\right)+2010\)
\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2010\ge2010\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}y=3\\x+y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=3\\x=-4\end{cases}}}\)
Vậy \(Min_A=2010\Leftrightarrow\hept{\begin{cases}x=-4\\y=3\end{cases}}\)
Chúc bạn học tốt !!!
Tham khảo :
\(A=x^2+2y^2+2xy+2x-4y+2020\)
\(=\left(x^2+y^2+1+2x+2xy+2y\right)+\left(y^2-6y+9\right)+2010\)
\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2010\ge2010\)
Dấu ''=''= xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x=-4\\y=3\end{cases}}\)