Chứng minh đẳng thức
a) x^3+y^3=(x+y)[(x-y)^2+xy]
b)x^3+y^3-xy(x+y)=(x+y)(x-y)^2
c) ( x+y)(x^2-xy+y^2)=(x+y)^3 - 3xy(x+y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có : (x + y)[(x - y)2 + xy]
= (x + y)(x2 - 2xy + y2 + xy)
= (x + y)(x2 - xy + y2)
= x3 + y3
b. Ta có : x3 + y3 - xy(x + y)
= x3 + y3 - x2y - xy2
=x2(x - y) + y2(y - x)
= (x - y)(x2 - y2)
= (x - y)2.(x + y) đpcm
c) Ta có (x + y)3 - 3xy(x + y)
= (x + y)[(x + y)2 - 3xy)
= (x + y)(x2 + 2xy + y2 - 3xy)
= (x + y)(x2 - xy + y2) (đpcm)
a) VP = ( x + y )( x2 - 2xy + y2 + xy ) = ( x + y )( x2 - xy + y2 ) = x3 + y3 = VT ( đpcm )
b) VP = ( x + y )( x - y )2 = ( x + y )( x2 - 2xy + y2 ) = x3 - 2x2y + xy2 + x2y - 2xy2 + y3 = x3 + y3 - x2y - xy2 = x3 + y3 - xy( x + y ) = VT ( đpcm )
c) VP = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 = x3 + y3 = ( x + y )( x2 - xy + y2 ) = VT ( đpcm )
a)(x-y)(x^2+xy+y^2)+xy(x-y)
=(x-y)(x^2+2xy+y^2)
=(x-y)(x+y)^2
=> Đt trên Đ
b) CM tương tự nha
a) Ta có: \(\left(x+y\right)\left(x+y\right)\left(x+y\right)-3xy\left(x+y\right)\)
\(=\left(x^2+2xy+y^2\right)\left(x+y\right)-3x^2y-3xy^2\)
\(=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2\)
\(=x^3+y^3\)
b) Ta có: \(\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3+y^3-x^3+y^3\)
\(=2y^3\) (ko phải HĐT đâu nhé bn, tại mk rút gọn luôn nên nó cg samesame thế:))
Bài làm :
\(\text{a) }\left(x+y\right)\left(x+y\right)\left(x+y\right)-3xy\left(x+y\right)\)
\(=\left(x^2+2xy+y^2\right)\left(x+y\right)-3x^2y-3xy^2\)
\(=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2\)
\(=x^3+y^3\)
=> Điều phải chứng minh
\(\text{b) }\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3+y^3-x^3+y^3\)
\(=2y^3\)
=> Điều phải chứng minh
đối với các câu này bạn hãy khai triển phần nào dài bằng hàng dẳng thức rồi thu gọn lại nếu đúng thì vế trái bằng vế phải
thực hiện nhân đa thức với đa thức ở vế trái xog rút gọn là nó = vế pải
1/ Biến đổi vế trái , ta có :
(x-y)(x+y)= x2+xy - xy-y2= x2-y2
=> (x-y) (x+y) =x2-y2
2/ Biến đổi vế trái , ta có :
(x-y) (x2+xy+y2)= x3+x2y+xy2-x2y-xy2-y3
= (x2y-x2y)+(xy2-xy2)+x3-y3=x3-y3
=> (x-y) (x2+xy+y2) =x3-y3
3/ / Biến đổi vế trái , ta có :
(x+y) (x2-xy+y2) =x3-x2y+xy2+x2y-xy2+y3
(-x2y+x2y) + ( xy2-xy2) + x3+y3= x3+y3
\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)
\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)
\(x=0;y=0\Leftrightarrow B=0\)
Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)
Vậy \(A\ne B\)