\(\frac{\left(-5\right)^{60}.30^5}{15^5.5^{61}}=?\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\frac{(-5)^{60}.30^5}{15^5.5^{61}}=\frac{(5.2.3)^5}{(5.3)^5.5}=\frac{5^5.2^5.3^5}{5^5.3^5.5} =\frac{2^5}{5}=\frac{32}{5}\)
\(b) \frac{(-3)^{10}.15^5}{25^3.(-9)^7}=\frac{(-3)^{10} .(3.5)^5}{(5^2)^3.[(-3).3]^7}=\frac{(-3)^{10}.3^5.5^5}{5^6.(-3)^7.3^7}=\frac{(-3)^3}{5.3^2}=\frac{-3}{5}\)
~ Hok tốt a~
a. \(\frac{15^3.\left(-5\right)^4}{\left(-3\right)^5.5^6}=\frac{3^3.5^3.5^4}{\left(-3\right)^5.5^6}\)
\(=\frac{3^3.5^7}{\left(-3\right)^5.5^6}=\frac{5}{-9}\)
b. \(\frac{6^3.2^5.\left(-3\right)^2}{\left(-2\right)^9.3^7}=\frac{2^3.3^3.2^5.3^2}{\left(-2\right)^9.3^7}\)
\(=\frac{2^8.3^5}{\left(-2\right)^9.3^7}=\frac{1}{\left(-2\right).3^2}=-\frac{1}{18}\)
\(S=\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+.......+\frac{61}{\left(30.31\right)^2}\)
\(=\frac{1}{1^2.2^2}+\frac{1}{2^2.3^2}+....+\frac{1}{30^2.31^2}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{30}-\frac{1}{31}\)
\(=1-\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}-\frac{1}{3}\right)-......-\left(\frac{1}{30}-\frac{1}{30}\right)-\frac{1}{31}\)
\(=1-\frac{1}{31}\\ =\frac{31}{31}-\frac{1}{31}=\frac{30}{31}\)
no mình nha
\(S=\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+...+\frac{61}{\left(30.31\right)^2}\)
\(S=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+...+\frac{61}{30^2.31^2}\)
\(S=\frac{3}{1.4}+\frac{5}{4.9}+...+\frac{61}{900.961}\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{1}{900}-\frac{1}{961}\)
\(S=1-\frac{1}{961}\)
\(S=\frac{960}{961}\)
= \(\frac{3^2.5^4.7^9}{3^3.5^2.7^5.3^3.5^2.7^5}\)
=\(\frac{3^2.5^4.7^9}{3^6.5^4.7^{10}}\)
= \(\frac{1.1.1}{3^4.1.7}\)
= \(\frac{1}{567}\)
\(\frac{\left(3^2.5.7^9\right).\left(3^5.5^3\right)}{\left(3^3.5^2.7^5\right)^2}=\frac{\left(3^2.3^5\right).\left(5.5^3\right).7^9}{3^6.5^4.7^{10}}=\frac{3^7.5^4.7^9}{3^6.5^4.7^{10}}=\frac{3}{7}\)
vào luôn đi
đợi tui làm nốt bài đã