Câu 1: Giá trị của z biết (2.x-4)2+ giá trị tuyệt đối của (y+5) +(x+y-z)6=0
Câu 2: Số nguyên x thỏa mãn (x2-19).(x2-30) <0
Câu 3: Giả trịn nguyên dương để 1/8.1611=227
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(14,P=x^2+xy+y^2-3x-3y+3\\ P=\left(x^2+xy+\dfrac{1}{4}y^2\right)-3\left(x+\dfrac{1}{2}y\right)+\dfrac{3}{4}y^2-\dfrac{3}{2}y+3\\ P=\left(x+\dfrac{1}{2}y\right)^2-3\left(x+\dfrac{1}{2}y\right)+\dfrac{9}{4}+\dfrac{3}{4}\left(y^2-2y+1\right)\\ P=\left(x+\dfrac{1}{2}y-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\left(y-1\right)^2\ge0\)
(-1:-1:0)(1:-1:0)(-1:1:0)(0:-1:-1)(0:1:-1)(0:-1:1)(1:0:-1)(-1:0:-1)(-1:0:-1)(0:0:-2)(0:-2:0)(2:0:0) 12 cặp + 6 cặp trên là 18 cặp
từ x=6y và |x|-|y|=60 => |x|=72 ; |y|=12
x2=(|x|)2=722=5184;y2=(|y|)2=122=144
x=6y => xy=6y2 =>xy=6.144=864
=> x2+y2+xy=5184+864+144=6192
vậy...
Lời giải:
Sửa: $x^2\geq y^2+z^2$
Áp dụng BĐT Cauchy-Schwarz:
$P\geq \frac{y^2+z^2}{x^2}+\frac{7x^2}{2}.\frac{4}{y^2+z^2}+2007$
$=\frac{y^2+z^2}{x^2}+\frac{14x^2}{y^2+z^2}+2007$
$=\frac{y^2+z^2}{x^2}+\frac{x^2}{y^2+z^2}+\frac{13x^2}{y^2+z^2}+2007$
$\geq 2+\frac{13x^2}{y^2+z^2}+2007$ (áp dụng BĐT Cô-si)
$\geq 2+13+2007=2022$ (do $x^2\geq y^2+z^2$)
Vậy $P_{\min}=2022$