Cau1 :Nghiem cua phuong trinh cos2x+sin(x+pi/4)=0
Cau 2 ngiem cua phuong trinh sin(3x-5pi/6)+cos(3x+3pi/6)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(-1\le sin2x;cos2x\le1\Rightarrow\left\{{}\begin{matrix}sin^42x\le sin^22x\\cos^42x\le cos^22x\end{matrix}\right.\)
\(\Rightarrow sin^42x+cos^42x\le sin^22x+cos^22x=1\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left[{}\begin{matrix}sin2x=0\\cos2x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{2}\\x=\frac{\pi}{4}+\frac{k\pi}{2}\end{matrix}\right.\)
\(\Leftrightarrow16sin^4x.cos^4x+cos^4x-1=0\)
\(\Leftrightarrow16sin^4x.cos^4x+\left(cos^2x+1\right)\left(cos^2x-1\right)=0\)
\(\Leftrightarrow16sin^4x.cos^4x-sin^2x\left(cos^2x+1\right)=0\)
\(\Leftrightarrow sin^2x\left(16sin^2x.cos^4x-cos^2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\16sin^2x.cos^4x-cos^2x-1=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow16cos^4x\left(1-cos^2x\right)-cos^2x-1=0\)
Đặt \(cos^2x=t\in\left[0;1\right]\)
\(\Rightarrow16t^2\left(1-t\right)-t-1=0\)
\(\Leftrightarrow-16t^3+16t^2-t-1=0\)
Nghiệm của pt bậc 3 này rất xấu cho nên chúng ta chỉ xác định được 1 nghiệm \(x=k\pi\)
Thay x=1 ta được ( 1 - 3a + 1 )( 3 + 2a - 5)
<=> a = 1 (bạn tự giải ra nha, laptop mình hơi mát)
Thay a = 1 ta được: ( x - 3 + 1)( 3x + 2 - 5)
<=> 3(x - 2)(x - 1)
<=> Nghiệm còn lại: x= 2
Thay x=1 vào phương trình ta có:
\(\left(1-3a+1\right)\left(3+2a-5\right)=0\)
\(\Leftrightarrow\left(-3a+2\right)\left(2a-2\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}-3a+2=0\\2a-2=0\end{matrix}\right.\left[\begin{matrix}a=\dfrac{2}{3}\\a=1\end{matrix}\right.\)
TH1: \(a=\dfrac{2}{3}\)
\(\Rightarrow\left(x-3.\dfrac{2}{3}+1\right)\left(3x+2.\dfrac{2}{3}-5\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x-\dfrac{11}{3}\right)=0\Leftrightarrow\left[\begin{matrix}x-1=0\\3x-\dfrac{11}{3}=0\end{matrix}\right.\left[\begin{matrix}x=1\\x=\dfrac{11}{9}\end{matrix}\right.\)
TH2:a=1
\(\Leftrightarrow\left(x-3+1\right)\left(3x+2-5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-3\right)=0\Leftrightarrow\left[\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Theo đề: nghiem x>0 cua phuong trinh: x+can3+3x^2-9=0
<=> x+căn3+3(x^2-3)=0
<=>x+căn3+3(x+canw3)(x-căn 3)=0
<=>(x+can3)(1+3x-can3)=0
<=>x= - căn 3 hoặc x=(-1+căn 3)/3
Ta co: x>0
\(x+\sqrt{3}+3x^2-9=0\)
\(<=>x+\sqrt{3}+3\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)=0\)
\(<=>\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)=0\)
\(<=>x=-\sqrt{3};\sqrt{3}\)
a) Để phương trình có nghiệm kép thì \(\Delta=0\)
<=> \(m^2-4=0\)
<=> \(\orbr{\begin{cases}m=2\\m=-2\end{cases}}\)
+) Với m = 2 thì phương trình có nghiệm kép là (-1)
+) Với m = -2 thì phương trình có nghiệm kép là (1)
b) Có : \(\Delta=b^2-4ac=9-4.2.\left(-5\right)=49>0\)
Suy ra phương trình có 2 nghiệm phân biệt (x1;x2) là (5/2;-1)
1, \(\left(sinx+\dfrac{sin3x+cos3x}{1+2sin2x}\right)=\dfrac{3+cos2x}{5}\)
⇔ \(\dfrac{sinx+2sinx.sin2x+sin3x+cos3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)
⇔ \(\dfrac{sinx+2sinx.sin2x+sin3x+cos3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)
⇔ \(\dfrac{sinx+cosx-cos3x+sin3x+cos3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)
⇔ \(\dfrac{sinx+cosx+sin3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)
⇔ \(\dfrac{2sin2x.cosx+cosx}{1+2sin2x}=\dfrac{3+cos2x}{5}\)
⇔ \(\dfrac{cosx\left(2sin2x+1\right)}{1+2sin2x}=\dfrac{2+2cos^2x}{5}\)
⇒ cosx = \(\dfrac{2+2cos^2x}{5}\)
⇔ 2cos2x - 5cosx + 2 = 0
⇔ \(\left[{}\begin{matrix}cosx=2\\cosx=\dfrac{1}{2}\end{matrix}\right.\)
⇔ \(x=\pm\dfrac{\pi}{3}+k.2\pi\) , k là số nguyên
2, \(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}.\left(1+cot2x.cotx\right)=0\)
⇔ \(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}.\dfrac{cos2x.cosx+sin2x.sinx}{sin2x.sinx}=0\)
⇔ \(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}.\dfrac{cosx}{sin2x.sinx}=0\)
⇔ \(48-\dfrac{1}{cos^4x}-\dfrac{2cosx}{2cosx.sin^4x}=0\)
⇒ \(48-\dfrac{1}{cos^4x}-\dfrac{1}{sin^4x}=0\). ĐKXĐ : sin2x ≠ 0
⇔ \(\dfrac{1}{cos^4x}+\dfrac{1}{sin^4x}=48\)
⇒ sin4x + cos4x = 48.sin4x . cos4x
⇔ (sin2x + cos2x)2 - 2sin2x. cos2x = 3 . (2sinx.cosx)4
⇔ 1 - \(\dfrac{1}{2}\) . (2sinx . cosx)2 = 3(2sinx.cosx)4
⇔ 1 - \(\dfrac{1}{2}sin^22x\) = 3sin42x
⇔ \(sin^22x=\dfrac{1}{2}\) (thỏa mãn ĐKXĐ)
⇔ 1 - 2sin22x = 0
⇔ cos4x = 0
⇔ \(x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\)
3, \(sin^4x+cos^4x+sin\left(3x-\dfrac{\pi}{4}\right).cos\left(x-\dfrac{\pi}{4}\right)-\dfrac{3}{2}=0\)
⇔ \(\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x+\dfrac{1}{2}sin\left(4x-\dfrac{\pi}{2}\right)+\dfrac{1}{2}sin2x-\dfrac{3}{2}=0\)
⇔ \(1-\dfrac{1}{2}sin^22x+\dfrac{1}{2}sin2x-\dfrac{1}{2}cos4x-\dfrac{3}{2}=0\)
⇔ \(\dfrac{1}{2}sin2x-\dfrac{1}{2}cos4x-\dfrac{1}{2}-\dfrac{1}{2}sin^22x=0\)
⇔ sin2x - sin22x - (1 + cos4x) = 0
⇔ sin2x - sin22x - 2cos22x = 0
⇔ sin2x - 2 (cos22x + sin22x) + sin22x = 0
⇔ sin22x + sin2x - 2 = 0
⇔ \(\left[{}\begin{matrix}sin2x=1\\sin2x=-2\end{matrix}\right.\)
⇔ sin2x = 1
⇔ \(2x=\dfrac{\pi}{2}+k.2\pi\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\)
4, cos5x + cos2x + 2sin3x . sin2x = 0
⇔ cos5x + cos2x + cosx - cos5x = 0
⇔ cos2x + cosx = 0
⇔ \(2cos\dfrac{3x}{2}.cos\dfrac{x}{2}=0\)
⇔ \(cos\dfrac{3x}{2}=0\)
⇔ \(\dfrac{3x}{2}=\dfrac{\pi}{2}+k\pi\)
⇔ x = \(\dfrac{\pi}{3}+k.\dfrac{2\pi}{3}\)
Do x ∈ [0 ; 2π] nên ta có \(0\le\dfrac{\pi}{3}+k\dfrac{2\pi}{3}\le2\pi\)
⇔ \(-\dfrac{1}{2}\le k\le\dfrac{5}{2}\). Do k là số nguyên nên k ∈ {0 ; 1 ; 2}
Vậy các nghiệm thỏa mãn là các phần tử của tập hợp
\(S=\left\{\dfrac{\pi}{3};\pi;\dfrac{5\pi}{3}\right\}\)
1.
\(\cos2x+\sin\left(x+\frac{pi}{4}\right)=0\)
\(\Leftrightarrow\sin\left(x+\frac{pi}{4}\right)=-\cos2x\)
\(\Leftrightarrow\sin\left(x+\frac{pi}{4}\right)=\sin\left(2x-\frac{pi}{2}\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{pi}{4}=2x-\frac{pi}{2}+k2pi\\x+\frac{pi}{4}=pi-2x+\frac{pi}{2}+k2pi\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=-\frac{3}{4}pi+k2pi\\3x=+\frac{5}{4}pi+k2pi\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}pi+k2pi\\x=\frac{5}{12}pi+k\frac{2}{3}pi\end{cases}}\)
2.
\(\sin\left(3x-\frac{5pi}{6}\right)+\cos\left(3x+\frac{3pi}{6}\right)=0\)
\(\Leftrightarrow\sin\left(3x-\frac{5pi}{6}\right)=-\cos\left(3x+\frac{3pi}{6}\right)\)
\(\Leftrightarrow\sin\left(3x-\frac{5pi}{6}\right)=\sin\left(3x+\frac{3pi}{6}-\frac{pi}{2}\right)\)
\(\Leftrightarrow\orbr{\begin{cases}3x-\frac{5pi}{6}=3x+\frac{3pi}{6}-\frac{pi}{2}+k2pi\\3x-\frac{5pi}{6}=pi-3x-\frac{3pi}{6}+\frac{pi}{2}+k2pi\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}0x=\frac{5pi}{6}+k2pi\left(VN\right)\\6x=\frac{11pi}{6}+k2pi\end{cases}}\)
\(\Leftrightarrow x=\frac{11pi}{36}+k\frac{1}{3}pi\)