Cho ΔABC nhọn, M;N lần lượt là trung điểm của AB và AC. Gọi AH là đường cao (H ϵ BC). Đoạn thẳng MN cắt AH tại K.
a) Chứng minh tg MNCB là hình thang.
b) Chứng minh tg KNCH là hình thang.
c) Tg KHBM là hình thang vuông.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác ABD và tam giác ACE
^A _ chung
^ADB = ^AEC = 900
Vậy tam giác ABD ~ tam giác ACE (g.g)
b, Xét tam giác CBD và tam giác CAK ta có
^C _ chung
^CDB = ^CKA = 900
Vậy tam giác CDB ~ tam giác CKA (g.g)
\(\dfrac{CD}{CK}=\dfrac{CB}{CA}\Rightarrow CD.CA=CB.CK\)
c, Xét tam giác KDC và tam giác ABC
^C _ chung
\(\dfrac{DC}{BC}=\dfrac{KC}{AC}\)( tỉ lệ thức tỉ số đồng dạng )
Vậy tam giác KDC ~ tam giác ABC (c.g.c)
Áp dụng định lý pitago vào tam giác vuông AMB,có:
\(AB^2=AM^2+BM^2\)
\(\Rightarrow AB=\sqrt{12^2+9^2}=\sqrt{225}=15cm\)
Áp dụng định lý pitago vào tam giác vuông AMC, có:
\(AC^2=AM^2+CM^2\)
\(\Rightarrow CM=\sqrt{AC^2-AM^2}=\sqrt{15^2-12^2}=\sqrt{81}=9cm\)
\(C_{ABC}=AB+AC+BC=15+15+\left(9+9\right)=48cm\)
Áp dụng định lí Pytago ta có
\(AB^2=AM^2+MB^2\\ =\sqrt{12^2+9^2}=15\)
Chu vi tam giác ABC là
\(15+15+9+9=48\left(cm\right)\)
Xét \(\Delta ABD\)và \(\Delta ACE\)có:
\(\widehat{ADB}=\widehat{AEC}=90^o\); \(\widehat{BAC}\)( chung )
\(\Rightarrow\)\(\Delta ABD\approx\Delta ACE\left(g.g\right)\)
\(\Rightarrow\)\(\frac{AB}{AC}=\frac{AD}{AE}\)
Xét \(\Delta ADE\)và \(\Delta ABC\)có :
\(\frac{AB}{AC}=\frac{AD}{AE}\); \(\widehat{BAC}\)( chung )
\(\Rightarrow\Delta ADE\approx\Delta ABC\left(c.g.c\right)\)
\(\Rightarrow\widehat{D_1}=\widehat{ABC}\)
Xét \(\Delta ADM\)và \(\Delta ABN\)có :
\(\widehat{D_1}=\widehat{ABN}\); \(\widehat{A_1}=\widehat{A_2}\)
\(\Rightarrow\Delta ADM\approx\Delta ABN\left(g.g\right)\)
\(\Rightarrow\frac{AD}{AB}=\frac{AM}{AN}=\frac{1}{2}\)
Vậy M là trung điểm AN
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
Giải thích các bước giải:
a. N là trung điểm AC; P là trung điểm CH⇒NP là đường trung bình của ΔACH ⇒NP || AH và NP=AH/2
tương tự: MQ là đường trung bình ΔABH ⇒MQ || AH và MQ=AH/2
⇒MQ || NP (cùng || AH)
b. theo câu a⇒NP và MQ ⊥ BC (vì AH ⊥ BC)
M là trung điểm AB, N là trung điểm AC⇒MN là đường trung bình ΔABC
⇒MN || BC và MN=BC/2⇒MN ⊥ MQ và MN ⊥ NP
⇒MNPQ là hình chữ nhật
c. để MNPQ là hình vuông ⇔MN=MQ=NP=QP
mà MQ=AH/2 và MN=BC/2 ⇒AH=BC
a. N là trung điểm AC; P là trung điểm CH⇒NP là đường trung bình của ΔACH ⇒NP || AH và NP=AH/2
tương tự: MQ là đường trung bình ΔABH ⇒MQ || AH và MQ=AH/2
⇒MQ || NP (cùng || AH)
b. theo câu a⇒NP và MQ ⊥ BC (vì AH ⊥ BC)
M là trung điểm AB, N là trung điểm AC⇒MN là đường trung bình ΔABC
⇒MN || BC và MN=BC/2⇒MN ⊥ MQ và MN ⊥ NP
⇒MNPQ là hình chữ nhật
c. để MNPQ là hình vuông ⇔MN=MQ=NP=QP
mà MQ=AH/2 và MN=BC/2 ⇒AH=BC