chứng minh rằng A=10^2019+2 chia hết cho 2 và 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)102018=1000000..00000(2018 chữ số 0)
=>102018+2=100000......00002(2017 chữ số 0)
tổng các chữ số ở tổng trên là:1+0+0+...+0+0+2(2017 chữ số 0)
=1+2=3
=>tổng trên chia hết cho 3.
a)102019=1000000..00000(2019 chữ số 0)
=>102019+8=100000......00002(2018 chữ số 0)
tổng các chữ số ở tổng trên là:1+0+0+...+0+0+8(2018 chữ số 0)
=1+8=9
=>tổng trên chia hết cho 9.
a) Có 102018 = 100...00 ( 2018 chữ số 0 )
=> 1000..0000 + 2 = 100..02 ( 2017 chữ số 0 )
Tổng các chữ số của số trên là : 1+0+0+0+...+0+0+2 = 3
=> 102018 chia hết cho 3
b) Có 102019 = 1000..0 ( 2019 chữ số 0 )
=> 1000..00 + 8 = 100..08 ( 2018 chữ số 0 )
Tổng các chữ số trên là : 1+0+0+0+0+....+0+8 = 9
=> 102019 + 8 chia hết cho 9
Giải thích các bước giải:
Ta có:A=1+2+22+23+...+22019A=1+2+22+23+...+22019
→2A=2+22+23+24+...+22020→2A=2+22+23+24+...+22020
→2A−A=22020−1→2A−A=22020−1
→A=22020−1→A=22020−1
Vì 2⋮2→22020⋮22⋮2→22020⋮2
→22020−1⋮̸2→22020−1⋮̸2
→A⋮̸2→A⋮̸2
Ta có:
22020−1=(22)1010−1=41010−1⋮4−1=322020−1=(22)1010−1=41010−1⋮4−1=3
→22020−1⋮3→22020−1⋮3
→A⋮3→A⋮3
Lại có:
22020=2⋅22019=2⋅23⋅673=2⋅(23)673=2⋅867322020=2⋅22019=2⋅23⋅673=2⋅(23)673=2⋅8673
Vì 88 chia 77 dư 11
→8673→8673 chia 77 dư 11
→2⋅8673→2⋅8673 chia 77 dư 22
→2⋅8673−1→2⋅8673−1 chia 77 dư 11
→22020−1→22020−1 chia 77 dư 11
→A→A chia 77 dư 11
→A⋮̸7→A⋮̸7
→A⋮̸70→A⋮̸70 vì 70=7⋅1070=7⋅10
Ta có:
A=22020−1A=22020−1
→A+1=22020→A+1=22020
→A+1=(21010)2→A+1=(21010)2 là số chính phương
\(A=10^{2019}+2=\left(2.5\right)^{2019}+2=2\left(2^{2018}.5^{2019}+1\right)⋮2\)
Ta có: 10 chia 3 dư 1
=> \(10^{2019}:3\)dư 1
=> \(10^{2019}+2:3\)dư 3
mà 3 chia hết cho 3
=> \(10^{2019}+2⋮3\)