Cho a ,b ,c >0.5 thỏa mãn a + b + c = 3 . Chứng minh \(\frac{2a-1}{1+bc}+\frac{2b-1}{1+ca}+\frac{2c-1}{1+ab}\ge\frac{3}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(BDT\Leftrightarrow\sqrt{\frac{3}{a+2b}}+\sqrt{\frac{3}{b+2c}}+\sqrt{\frac{3}{c+2a}}\le\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)
\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM ta có:
\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{b}}\ge\frac{9}{\sqrt{a}+\sqrt{2}\cdot\sqrt{2b}}\ge\frac{9}{\sqrt{\left(1+2\right)\left(a+2b\right)}}=\frac{3\sqrt{3}}{\sqrt{a+2b}}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{c}}\ge\frac{3\sqrt{3}}{\sqrt{b+2c}};\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{a}}\ge\frac{3\sqrt{3}}{\sqrt{c+2a}}\)
Cộng theo vế 3 BĐT trên ta có:
\(3\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge3\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
Đẳng thức xảy ra khi \(a=b=c\)
Bài 2: làm mãi ko ra hình như đề sai, thử a=1/2;b=4;c=1/2
Bài 2/
\(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)
\(=\frac{b^2c^2}{a^2b^2c+a^2c^2b}+\frac{c^2a^2}{b^2c^2a+b^2a^2c}+\frac{a^2b^2}{c^2a^2b+c^2b^2a}\)
\(=\frac{b^2c^2}{ab+ac}+\frac{c^2a^2}{bc+ba}+\frac{a^2b^2}{ca+cb}\)
\(\ge\frac{\left(bc+ca+ab\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)
\(\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3}{2}\)
Dấu = xảy ra khi \(a=b=c=1\)
\(VT=\frac{b^2c^2}{b+c}+\frac{a^2c^2}{a+c}+\frac{a^2b^2}{a+b}\ge\frac{\left(ab+bc+ca\right)^2}{2\left(a+b+c\right)}\ge\frac{3abc\left(a+b+c\right)}{2\left(a+b+c\right)}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\)thì bài toán thành
\(x+y+z=2\) chứng minh rằng
\(\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\ge\frac{1}{2}\)
Trước hết ta chứng minh:
Ta có: \(\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge\frac{3x}{4}\)
\(\Leftrightarrow\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\)
\(\Rightarrow VP\ge\left(x+y+z\right)-\frac{3}{2}=2-\frac{3}{2}=\frac{1}{2}\)
BĐT tương đương : \(\frac{a\left(a+c+b-3b\right)}{1+ab}+\frac{b\left(b+a+c-3c\right)}{a+bc}+\frac{c\left(c+b+a-3a\right)}{1+ca}\ge0\)
\(\Leftrightarrow\frac{3a\left(1-b\right)}{1+ab}+\frac{3b\left(1-c\right)}{1+bc}+\frac{3c\left(1-a\right)}{1+ca}\ge0\)
\(\Leftrightarrow\frac{a\left(1-b\right)}{1+ab}+\frac{b\left(1-c\right)}{1+bc}+\frac{c\left(1-a\right)}{1+ca}\ge0\)
\(\Leftrightarrow\frac{a\left(1-b\right)}{1+ab}+1+\frac{b\left(1-c\right)}{1+bc}+1+\frac{c\left(1-a\right)}{1+ca}\ge3\)
\(\Leftrightarrow\frac{a+1}{1+ab}+\frac{b+1}{1+bc}+\frac{c+1}{1+ca}\ge3\)
Áp dụng BĐT Cosi ta có: \(\frac{a+1}{1+ab}+\frac{b+1}{1+bc}+\frac{c+1}{1+ca}\ge3\sqrt[3]{\frac{a+1}{1+ab}\cdot\frac{b+1}{1+bc}\cdot\frac{c+1}{1+ca}}\)
Ta phải chứng minh: \(\sqrt[3]{\frac{a+1}{1+ab}\cdot\frac{b+1}{1+bc}\cdot\frac{c+1}{1+ca}}\ge1\)
\(\Leftrightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge\left(1+ab\right)\left(1+bc\right)\left(1+ca\right)\)
Thật vậy \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge\left(1+ab\right)\left(1+bc\right)\left(1+ca\right)\)
\(\Leftrightarrow abc+ab+bc+ca+a+b+c+1\ge a^2b^2c^2+abc\left(a+b+c\right)+ab+bc+ca+1\)
\(\Leftrightarrow3\ge a^2b^2c^2+2abc\) (*)
Từ a+b+c=3 => \(3\ge3\sqrt[3]{abc}\Leftrightarrow abc\le1\)
=> (*) đúng
Vậy \(\frac{a\left(a+c-2b\right)}{1+ab}+\frac{b\left(b+a-2c\right)}{1+bc}+\frac{c\left(c+b-2a\right)}{1+ca}\ge0\)
Đẳng thức xảy ra <=> a=b=c=1
Em chỉ giải ra được 1 TH dấu bằng thôi: a = b = c (còn trường hợp a = b; c=0 và các hoán vị thì em chịu, vì khi xét dấu = trong bđt thì em chỉ xảy ra 1 th)
Áp dụng BĐT Cauchy-Schwarz dạng Engel;
\(VT\ge\frac{16}{a^2+b^2+c^2+\left(a+b+c\right)^2}\ge\frac{16}{\frac{\left(a+b+c\right)^2}{3}+\left(a+b+c\right)^2}\)\(=\frac{12}{\left(a+b+c\right)^2}\) (đpcm)
Đẳng thức xảy ra khi a = b = c
Đặt \(x=\frac{1}{a}, y=\frac{1}{b}, z=\frac{1}{c}, \Rightarrow x+y+z=2\)
Suy ra \(\frac{1}{a\left(2a-1\right)^2}+\frac{1}{b\left(2b-1\right)^2}+\frac{1}{c\left(2c-1\right)^2}=\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\)
Ta có \(\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge3\sqrt[3]{\frac{x^3}{\left(2-x\right)^2} .\frac{2-x}{8}.\frac{2-x}{8}}=\frac{3x}{4}.\)
\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\)\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\ge x+y+z-\frac{3}{2}=2-\frac{3}{2}=\frac{1}{2}\)
dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)hay \(a=b=c=\frac{3}{2}\)
\(L.H.S\left(VT\right)\ge\frac{\left[2\left(a+b+c\right)-3\right]^2}{\Sigma\left(2a-1\right)\left(1+bc\right)}=\frac{9}{\Sigma\left(2a-1\right)\left(1+bc\right)}\).
Như vậy ta cần chứng minh:
\(\Sigma\left(2a-1\right)\left(1+bc\right)\le6\)
\(\Leftrightarrow\Sigma\left(2a-1\right)\left(1+bc\right)\le\frac{2\left(a+b+c\right)^3}{9}\)
\(\Leftrightarrow9\Sigma\left(2a-1\right)\left(1+bc\right)\le2\left(a+b+c\right)^3\)
\(\Leftrightarrow2\Sigma a^3+6.\Sigma ab\left(a+b\right)+9\Sigma ab+27-18\Sigma a-42abc\ge0\)
Đặt \(a+b+c=p=3;ab+bc+ca=q>\frac{3}{4};abc=r>\frac{1}{8}\). Cần chứng minh:
\(2\left(p^3-3pq+3r\right)+6\left(pq-3r\right)+9q+27-18p-42r\ge0\)
\(\Leftrightarrow\left(2p^3-54r\right)+9q-18p+27\ge0\)
\(\Leftrightarrow2\left(p^3-27r\right)+9\left(q-\frac{p^2}{3}\right)\ge0\)
\(\Leftrightarrow2\left[\left(a+b+c\right)^3-27abc\right]-3\left(\left(a+b+c\right)^2-3\left(ab+bc+ca\right)\right)\ge0\)
Bây giờ thì dùng sos nào:
Chú ý các đẳng thức: \(\left(a+b+c\right)^3-27abc=\Sigma\frac{a+b+7c}{2}\left(a-b\right)^2\)
\(\left(a+b+c\right)^2-3\left(ab+bc+ca\right)=\Sigma\frac{1}{2}\left(a-b\right)^2\)
Như vậy ta chỉ cần chứng minh:
\(\Sigma\left(a+b+7c\right)\left(a-b\right)^2-\Sigma\frac{3}{2}\left(a-b\right)^2\ge0\)
\(\Leftrightarrow\Sigma\left(a-b\right)^2\left(a+b+7c-\frac{3}{2}\right)\ge0\)
Và BĐT này là đúng bởi vì: \(a+b+7c-\frac{3}{2}=6c+\frac{3}{2}>0\) rồi tương tự các cái kia:v
Ta có đpcm.
P/s: Em có tính nhầm chỗ nào ko nhỉ:)) nếu ko thì em rất hóng có gp:D
làm kỳ công quá mà chả có gp:( chả biết có sai chỗ nào ko nữa..