Cho 2 số hữu tỉ a,b và số nguyên dương x không phải số chính phương. Chứng minh nếu \(a+b\sqrt{x}=0\Rightarrow a=b=0\\ \)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(VT=1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}\)
\(=\frac{n^2\left(n+1\right)^2}{n^2\left(n+1\right)^2}+\frac{\left(n+1\right)^2}{n^2\left(n+1\right)^2}+\frac{n^2}{n^2\left(n+1\right)^2}\)
\(=\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+n^2+2n+1+n^2}{n^2\left(n+1\right)}\left(1\right)\)
\(VP=\frac{\left(n^2+n+1\right)}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)+1\right]^2}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+1+2\left[n\left(n+1\right)\right]}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+1+2\left(n^2+1\right)}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+1+2n^2+2n}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+2n+1+2n^2}{n^2\left(n+1\right)^2}\left(2\right)\)
Từ (1) và (2)
=>đpcm
Vì \(\sqrt{x}\)là một số hữu tỉ
\(\Rightarrow\sqrt{x}\)có dạng \(\frac{a}{b}\)(\(\frac{a}{b}\)là một phân số tối giản)
Vì \(\sqrt{x}\ge0\)và theo đề bài \(\frac{a}{b}\ne0\Rightarrow\frac{a}{b}\ge0\)
\(\Rightarrow a,b\)là những số nguyên dương (1)
Vì \(\sqrt{x}\)có dạng \(\frac{a}{b}\Rightarrow\left(\sqrt{x}\right)^2=\left(\frac{a}{b}\right)^2\Rightarrow x=\frac{a^2}{b^2}\)(2)
Vì \(\frac{a}{b}\)là phân số tối giản
\(\Rightarrow a,b\)là hai số nguyên tố cùng nhau
\(\Rightarrow\)ƯCLN(a,b)=1
Vì \(a^2\) có Ư(a), \(b^2\)có Ư(b)
\(\Rightarrow a^2,b^2\) là hai số nguyên tố cùng nhau
\(\Rightarrow\)ƯCLN(\(a^2,b^2\))=1
\(\Rightarrow\frac{a^2}{b^2}\) là phân số tối giản (3)
Từ (1), (2) và (3)
=>đpcm
do a,b binh dang ,coi b> 0
a) ab cung dau
=> a duong = > a> 0
=> a/b > o/b = 0
=> a b la so huu ti duong neu a,b cung dau[1]
b) do a khac dau =>a am > a< 0
=> a/b < 0/b=0
=> am neu a,b khac dau [2]
tu 1 va 2 => dpcm
a) Nếu a;b cùng dấu => a; b cùng dương hoặc a;b cùng âm
+) a;b cùng dương => a/b dương
+) a;b cùng âm => a/b dương
Vậy a/b là số hữu tỉ dương
b) Nếu a;b trái dấu => a dương;b âm hoặc a âm và b dương
cả 2 trường hợp a/b đều < 0
=> a/b là số hữu tỉ âm
a, Nếu a và b cùng dấu:
+ a và b cùng dương => \(\frac{a}{b}\)dương
+ a và b cùng âm => \(\frac{a}{b}\)dương
=> Nếu a và b cùng dấu thì \(\frac{a}{b}\)dương (đpcm)
b, Nếu a và b khác dấu:
+ a dương; b âm => \(\frac{a}{b}\)âm
+ a âm; b dương => \(\frac{a}{b}\)âm
=> Nếu a và b khác dấu thì \(\frac{a}{b}\)âm (Đpcm)
do a,b bình đẳng, coi b>0
A) a,b cùng dấu
=>a dương=>a>0
=>a/b>o/b=0
=>a/b là số hữu tỉ dương nếu a,b cùng dấu(1)
B)do a,b khác dấu =>a âm=>a<0
=>a/b<0/b=0
=>a/b âm nếu a,b khác dấu(2)
từ 1 và 2 =>đpcm
a) a và b cùng dấu <=> a và b cùng dương hoặc a và b cùng âm.
- Nếu a và b cùng dương thì số hữu tỉ \(\frac{a}{b}\) dương.
- Nếu a và b cùng âm thì số hữu tỉ \(\frac{a}{b}=\frac{-a}{-b}\) dương.
b) a và b khác dấu <=> a dương và b âm hoặc a âm và b dương
- Nếu a dương b âm thì số hữu tỉ \(\frac{a}{b}=\frac{m}{-n}\) âm (a = m ; b = -n)
- Nếu a âm b dương thì số hữu tỉ \(\frac{a}{b}=\frac{-p}{q}\) âm (a = -p ; b = q)