K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2018

câu này dễ mà bạn tra mạng sẽ ra

16 tháng 1 2020

A D E B C I M N K F

a) +) Chứng minh \(\Delta\)DAC = \(\Delta\)BAE 

Thật vậy: Ta có: AD = AB ( \(\Delta\)DAB đều ) 

                         ^DAB = ^CAE ( = 60\(^o\); \(\Delta\)DAB đều ; \(\Delta\)CAE đều ) => ^DAC = ^BAE 

                           CA = AE ( \(\Delta\)CAE đều )

Từ 3 điều trên => \(\Delta\)DAC = \(\Delta\)BAE ( c.g.c) (1)

=>  ^ABE = ^ADC (2)

+) Xét \(\Delta\)KAD và \(\Delta\)KIB có: ^DKA = ^BKI ( đối đỉnh )

                                                  ^KDA = ^KBI( theo  ( 2)  )

                    mà ^DKA + ^KDA + ^KAD= ^BKI + ^KBI + ^KIB = 180\(^o\)

=>  ^KIB = ^KAD = ^BAD=  60\(^o\)

=> ^DIB = 60\(^o\)

b) Từ (1) => DC = BE mà M là trung điểm DC; N là trung điểm BE 

=> DM  = BN (3) 

+) Xét \(\Delta\)BAN và \(\Delta\)DAM 

có: BN = DM ( theo (3)

     ^ABN = ^ADM ( theo (2)

     AB = AD ( \(\Delta\)ADB đều )

=> \(\Delta\)BAN = \(\Delta\)DAM  (4) 

=> AN = AM  => \(\Delta\)AMN cân tại A  (5)

+) Từ (4) => ^BAN = ^DAM => ^BAM + ^MAN = ^DAB + ^BAM  

=> ^MAN = ^DAB = 60\(^o\)(6)

Từ (5); (6) => \(\Delta\)AMN đều 

c) +) Trên tia đối tia MI lấy điểm F sao cho FI = IB => \(\Delta\)FIB cân tại I 

mà ^BIF = ^BID = 60\(^{\text{​​}o}\)( theo (a))

=> \(\Delta\)FIB đều  (7)

=> ^DBA = ^FBI( =60\(^o\))

=> ^DBF + ^FBA = ^FBA + ^ABI 

=> ^DBF = ^ABI  

Lại có: BI = BF ( theo (7) ) và BA = BD ( \(\Delta\)BAD đều )

Từ (3) điều trên => \(\Delta\)DFB = \(\Delta\)AIB  => ^AIB = ^DFB = 180\(\text{​​}^o\)- ^BFI = 180\(\text{​​}^o\)-60\(\text{​​}^o\)=120\(\text{​​}^o\)

+) Mặt khác ^BID = 60 \(\text{​​}^o\)( theo (a) ) 

=> ^DIE = 180\(\text{​​}^o\)- ^BID = 120 \(\text{​​}^o\)và ^DIA = ^AIB - ^BID = 120\(\text{​​}^o\)-60\(\text{​​}^o\)=60\(\text{​​}^o\)

=> ^AIE = ^DIE - ^DIA = 120\(\text{​​}^o\)-60\(\text{​​}^o\)=60\(\text{​​}^o\)

=> ^DIA = ^AIE ( = 60\(\text{​​}^o\)

=> IA là phân giác ^DIE.

                       

a: Xet ΔBAE và ΔDAC có

BA=DA

góc BAE=góc DAC(=150 độ)

AE=AC

=>ΔBAE=ΔDAC

=>BE=DC

b: Gọi F là giao của AB và CD

Xét ΔADF và ΔIBF có

goc ADF=góc FBI

góc AFD=góc BFI

=>ΔADF đồng dạng với ΔFBI

=>góc DAF=góc BIF=60 độ

=>góc BIC=120 độ

29 tháng 1 2016

6trfyhehrdtftygqae4rt6yhtyfgctgtrftyghytgh

a: Xet ΔBAE và ΔDAC có

BA=DA

góc BAE=góc DAC(=150 độ)

AE=AC

=>ΔBAE=ΔDAC

=>BE=DC

b: Gọi F là giao của AB và CD

Xét ΔADF và ΔIBF có

goc ADF=góc FBI

góc AFD=góc BFI

=>ΔADF đồng dạng với ΔFBI

=>góc DAF=góc BIF=60 độ

=>góc BIC=120 độ

Vì \(\Delta ABC\)cân nên AB=AC

\(\Delta ADB\)đều nên AD=BD=AB

\(\Delta ACE\)đều nên AC=CE=AE

=>AB=AC=AD=BD=CE=AE

a)Xét \(\Delta DAC\)và \(\Delta BAE\)có:

BA=AD

\(\widehat{DAC}=\widehat{BAE}\)(=90o+60o)

AD=AE

=>\(\Delta DAC=\Delta BAE\)(c.g.c)

=> BE=CD ( cặp cạnh tương ứng)   (đpcm)

a: Xet ΔBAE và ΔDAC có

BA=DA

góc BAE=góc DAC(=150 độ)

AE=AC

=>ΔBAE=ΔDAC

=>BE=DC

b: Gọi F là giao của AB và CD

Xét ΔADF và ΔIBF có

goc ADF=góc FBI

góc AFD=góc BFI

=>ΔADF đồng dạng với ΔFBI

=>góc DAF=góc BIF=60 độ

=>góc BIC=120 độ