Bài 1: Cho hai đường tròn đồng tâm (O;2R),(O;R). Điểm P nằm ngoài (O;2R). Vẽ đường tròn (P;PO) cắt (O;2R) tại C,D và cắt (O;R) tại E,F. Hai cạnh OC,OD cắt (O;R) tại A,B. Chứng minh rằng
a) CD//EF
b) PA,PB là hai tiếp tuyến của (O;R)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ OM⊥AB⇒OM⊥CD.
Xét đường tròn (O;OC) (đường tròn nhỏ) có OM là một phần đường kính, CD là dây và OM⊥CD nên M là trung điểm của CD hay MC=MD (định lý)
Xét đường tròn (O;OA) (đường tròn lớn) có OM là một phần đường kính, AB là dây và OM⊥AB nên M là trung điểm của AB hay MA=MB (định lý)
Ta có MA=MB và MC=MD (cmt) nên trừ các đoạn thẳng theo vế với vế ta được MA−MC=MB−MD ⇒AC=BD.
Nhận xét. Kết luận bài toán vẫn được giữ nguyên nếu C và D đổi chỗ cho nhau.
Vì đường tròn (O’) cắt đường tròn (O ; OA) tại A và B nên OO’ là trung trực của AB
Suy ra : OO’ ⊥ AB (1)
Vì đường tròn (O’) cắt đường tròn (O ; OC) tại C và D nên OO’ là trung trực của CD
Suy ra : OO’ ⊥ CD (2)
Từ (1) và (2) suy ra : AB // CD.
a) Gọi d là tiếp tuyến tại A của đường tròn (O) => d vuông góc OA => d vuông góc AB
Vì AB là đường kính của đường tròn (AB) nên d cũng là tiếp tuyến của (AB)
Vậy (O) và (AB) tiếp xúc nhau tại A (đpcm).
b) Gọi I là trung điểm đoạn AB => I là tâm của (AB) => ^ICA = ^IAC = ^OEA => IC // OE
Ta thấy OB = BI = IA = OA/3 => \(\frac{AI}{AO}=\frac{1}{3}\). Áp dụng ĐL Thales vào \(\Delta\)AEO có
\(\frac{AC}{AE}=\frac{AI}{AO}=\frac{1}{3}\) => AC = 1/3.AE (1)
Gọi OC,OD cắt đường tròn (O) cho trước lần lượt tại F,G. Khi đó DC // GF
Hay GF // AE. Mà GF và AE là các dây của đường tròn (O) nên (GE = (AF => ^EOG = ^AOF
Xét \(\Delta\)ODE và \(\Delta\)OCA: OD = OC, ^EOD = ^AOC (cmt), OE = OA => \(\Delta\)ODE = \(\Delta\)OCA (c.g.c)
=> ED = AC. Kết hợp với (1) suy ra AC = DE = AE/3 => AC = CD = DE (đpcm).
Giả sử vị trí các điểm theo thứ tự là A, C, B, D.
Kẻ OH ⊥ CD. Theo tính chất đường kính vuông góc với một dây ta có:
HA = HB, HC = HD
Nên AC = HA – HC = HB – HD = BD
Vậy AC = BD.
(Trường hợp vị trí các điểm theo thứ tự là A, D, C, B chứng minh tương tự.)
(Điểm P nằm trong hay nằm ngoài (O;2R) cũng không vấn đề gì nhé, mình vẽ như vậy cho hình đỡ to)
a) Xét hai đường tròn (O;R) và (P) cắt nhau tại hai điểm E,F. Suy ra OP là trung trực của EF
Tương tự OP là trung trực của CD. Do đó CD và EF có chung đường trung trực. Vậy CD // EF (đpcm).
b) Có OA = R; OC = 2R, A thuộc OC nên A là trung điểm OC
Mà OC là một dây của (P) nên PA vuông góc OA. Tương tự PB vuông góc với OB
Vậy PA,PB là hai tiếp tuyến của (O;R) (đpcm).