trục căn thức ở mẫu
\(\frac{\sqrt{3}+\sqrt{5}}{\left(\sqrt{5}+1\right)\left(\sqrt{3}-1\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}-11\right)\)
\(=\left(3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}\right)\left(\sqrt{6}-11\right)\)
\(=\left(\sqrt{6}-11\right)\left(\sqrt{6}-11\right)\)
\(=127-22\sqrt{6}\)
b: Ta có: \(\left(1-\dfrac{5+\sqrt{5}}{1+\sqrt{5}}\right)\left(\dfrac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
\(=\left(1-\sqrt{5}\right)\left(-1-\sqrt{5}\right)\)
=-1+5
=4
a) \(\frac{\sqrt{2}}{1+\sqrt{2}-\sqrt{3}}=\frac{\sqrt{2}.\left(1-\sqrt{2}+\sqrt{3}\right)}{\left(1+\sqrt{2}-\sqrt{3}\right).\left(1-\sqrt{2}+\sqrt{3}\right)}.\)
\(=\frac{\sqrt{2}.\left(1-\sqrt{2}+\sqrt{3}\right)}{1-\left(\sqrt{2}-\sqrt{3}\right)^2}=\frac{\sqrt{2}.\left(1-\sqrt{2}+\sqrt{3}\right)}{1-\left(5-2\sqrt{6}\right)}\)
\(=\frac{\sqrt{2}.\left(1-\sqrt{2}+\sqrt{3}\right)}{-4+2\sqrt{6}}=\frac{1-\sqrt{2}+\sqrt{3}}{-2\sqrt{2}+2\sqrt{3}}\)
\(=\frac{\left(1-\sqrt{2}+\sqrt{3}\right).\left(\sqrt{2}+\sqrt{3}\right)}{-2\left(\sqrt{2}-\sqrt{3}\right).\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=\frac{\left(1-\sqrt{2}+\sqrt{3}\right).\left(\sqrt{2}+\sqrt{3}\right)}{-2.\left(2-3\right)}\)\(=\frac{\left(1-\sqrt{2}+\sqrt{3}\right).\left(\sqrt{2}+\sqrt{3}\right)}{2}\)
Căn thức ở mẫu đã được trục rồi.
Nếu cần thì phá ngoặc phần tử số ra.
b) Nhân cả tử số và mẫu số cho \(\sqrt{a+3}-\sqrt{a-3}\)thì mẫu số có giá trị là (a + 3) - (a - 3) = 6; tử số có giá trị là \(\left(\sqrt{a+3}-\sqrt{a-3}\right)^2\). Khi đó, căn thức ở mẫu đã được trục đi rồi. Sau đó bạn phá ngoặc phần tử số ra.
Lời giải:
Ta có:
\(\frac{\sqrt{3}+\sqrt{5}}{(\sqrt{5}+1)(\sqrt{3}-1)}=\frac{(\sqrt{3}+\sqrt{5})(\sqrt{5}-1)(\sqrt{3}+1)}{(\sqrt{5}+1)(\sqrt{5}-1)(\sqrt{3}-1)(\sqrt{3}+1)}\)
\(=\frac{(\sqrt{3}+\sqrt{5})(\sqrt{5}-1)(\sqrt{3}+1)}{(5-1)(3-1)}=\frac{(\sqrt{3}+\sqrt{5})(\sqrt{5}-1)(\sqrt{3}+1)}{8}\)