K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

18 tháng 9 2017

câu 1 

ta có .....

lười viết Min - cốp xki nha

18 tháng 9 2017

DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)

mà \(3x\ge-3\sqrt{5}\)

mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)

min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)

24 tháng 6 2021

a) đk: x\(\ge0\);

P = \(\left[\dfrac{x+2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}+1}\right].\dfrac{4\sqrt{x}}{3}\)

\(\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}.\dfrac{4\sqrt{x}}{3}\)

\(\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}.\dfrac{4\sqrt{x}}{3}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

b) Để P = \(\dfrac{8}{9}\)

<=> \(\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{8}{9}\)

<=> \(\dfrac{\sqrt{x}}{x-\sqrt{x}+1}=\dfrac{2}{3}\)

<=> \(\dfrac{3\sqrt{x}-2x+2\sqrt{x}-2}{3\left(x-\sqrt{x}+1\right)}=0\)

<=> \(-2x+5\sqrt{x}-2=0\)

<=> \(\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)

<=> \(\left[{}\begin{matrix}x=4\left(tm\right)\\x=\dfrac{1}{4}\left(tm\right)\end{matrix}\right.\)

c)

Đặt \(\sqrt{x}=a\) (\(a\ge0\))

P = \(\dfrac{4a}{3\left(a^2-a+1\right)}\)

Xét P + \(\dfrac{4}{9}\) = \(\dfrac{4a}{3a^2-3a+3}+\dfrac{4}{9}=\dfrac{12a+4a^2-4a+4}{9\left(a^2-a+1\right)}=\dfrac{4a^2+8a+4}{9\left(a^2-a+1\right)}=\dfrac{4\left(a+1\right)^2}{9\left(a^2-a+1\right)}\ge0\)

Dấu "=" <=> a = -1 (loại)

=> Không tìm được Min của P

Xét P - \(\dfrac{4}{3}\) = \(\dfrac{4a}{3\left(a^2-a+1\right)}-\dfrac{4}{3}=\dfrac{4a-4a^2+4a-4}{3\left(a^2-a+1\right)}=\dfrac{-4a^2+8a-4}{3\left(a^2-a+1\right)}=\dfrac{-4\left(a-1\right)^2}{3\left(a^2-a+1\right)}\le0\)

<=> \(P\le\dfrac{4}{3}\)

Dấu "=" <=> a = 1 <=> x = 1 (tm)

24 tháng 6 2021

Ai bảo cậu là không tìm được minP vậy?

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

Lời giải:
Đặt $\sqrt{2+x}=a; \sqrt{2-x}=b$. ĐK: $a,b\geq 0$

$a^2+b^2=4$

Gọi biểu thức cần tìm min max là $D$

$D=a+b-ab=(a-2)(2-b)+4-(a+b)$

Vì $a^2+b^2=4\Rightarrow a,b\leq 2$

$\Rightarrow (a-2)(2-b)\leq 0$

Mặt khác: $a^2+b^2=4\Rightarrow (a+b)^2=4+2ab\geq 4$

$\Rightarrow a+b\geq 2$

Do đó: $D=(a-2)(2-b)+4-(a+b)\leq 4-(a+b)\leq 2$

Vậy $D_{\max}=2$ khi $x=\pm 2$

--------------------

$4=a^2+b^2\geq 2ab\Rightarrow ab\leq 2$

$D=a+b-ab=\sqrt{4+2ab}-ab$

$=\sqrt{4+2ab}-2\sqrt{2}-(ab-2)+2\sqrt{2}-2$

$=\frac{2(ab-2)}{\sqrt{4+2ab}+2\sqrt{2}}-(ab-2)+2\sqrt{2}-2$

$=(ab-2)(\frac{2}{\sqrt{4+2ab}+2\sqrt{2}}-1)+2\sqrt{2}-2$

Vì $ab\leq 2\rightarrow ab-2\leq 0$

$ab\geq 0\Rightarrow \frac{2}{\sqrt{4+2ab}+2\sqrt{2}}-1 <\frac{2}{\sqrt{4}+2\sqrt{2}}-1<0$

$\Rightarrow D\geq 0+2\sqrt{2}-2=2\sqrt{2}-2$
Vậy $D_{\min}=2\sqrt{2}-2$ khi $x=0$

23 tháng 9 2016

a) \(A=5+\sqrt{-4x^2-4x}\) 

\(A==5+\sqrt{-4x\left(x+1\right)}\)

Có: \(-4x\left(x+1\right)\le0\)

\(\Rightarrow\sqrt{-4x\left(x+1\right)}=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Vậy: \(Max_A=5\) tại \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

b) \(B=\sqrt{x-2}+\sqrt{4-x}\)

ĐKXĐ: \(\hept{\begin{cases}x\ge2\\x\le4\end{cases}}\Rightarrow x\in\left\{2;3;4\right\}\)

Thay \(x=2\Rightarrow\sqrt{2-2}+\sqrt{4-2}=\sqrt{2}\)

Thay \(x=3\Rightarrow\sqrt{3-1}+\sqrt{4-3}=2\)

Thay \(x=4\Rightarrow\sqrt{4-2}+\sqrt{4-4}=\sqrt{2}\)

Vậy: \(Max_B=2\) tại \(x=3\)

24 tháng 9 2016

Bài 2:

a)\(A=\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}\)

\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}\)

\(=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)

\(\ge x-1+0+3-x=2\)

Dấu = khi \(\hept{\begin{cases}x-1\ge0\\x-2=0\\x-3\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x=2\\x\le3\end{cases}}\Leftrightarrow x=2\)

Vậy MinA=2 khi x=2

1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)

\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)

\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)

Dấu '=' xảy ra khi x=0

2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)

Dấu '=' xảy ra khi x=0

3: \(A=-2x-3\sqrt{x}+2< =2\)

Dấu '=' xảy ra khi x=0

5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)

Dấu '=' xảy ra khi x=1

22 tháng 8 2020

bạn có thể dùng bđt phụ này để chứng minh 

\(\sqrt{a+b+c}\le\sqrt{a}+\sqrt{b}+\sqrt{c}\le\sqrt{3\left(a+b+c\right)}\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)

Ukm

It's very hard

l can't do it 

Sorry!