Cho 2 đường thẳng AB và CD cắt nhau tại M. Biết \(\widehat{AMC}=2\widehat{AMD}\). Tính số đo các góc.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(\widehat{CMA}+\widehat{CMB}=180^0\) (Hai góc kề bù)
\(\Leftrightarrow5\widehat{CMA}+\widehat{CMA}=180^0\Leftrightarrow\widehat{CMA}=30^0\)
\(\Rightarrow\widehat{BMC}=5.30^0=150^0\)
Có \(\widehat{CMA}+\widehat{AMD}=180^0\)
\(\Leftrightarrow\widehat{AMD}=180^0-30^0=150^0\)
Có \(\widehat{DMB}=\widehat{AMC}=150^0\) (Hai góc đối đỉnh)
Vậy...
Góc AMD= 360 độ - 240 độ = 120o
Góc CMD = AMD = 120o vì 2 góc đối đỉnh
Góc AMC = \(\dfrac{\text{360o- (120o+120o)}}{2}\)= 60o
Góc BMD = AMC= 60o ( đối đỉnh)
nhớ tick
Ta có: \(\widehat{aMc}\) và \(\widehat{bMd}\) đối đỉnh nên: \(\widehat{aMc}=\widehat{bMd}\)
\(\widehat{aMd}\) và \(\widehat{bMc}\) đối đỉnh nên: \(\widehat{aMd}=\widehat{bMc}\)
a)
\(\widehat{aMc}=\widehat{bMd}=35^o\)
\(\widehat{aMd}=\widehat{bMc}=180^o-35^o=145^o\)
b)
\(\widehat{aMd}=3\widehat{aMc}\Leftrightarrow4\widehat{aMc}=180^o\)
\(\Leftrightarrow\widehat{aMc}=\widehat{bMd}=45^o\)
\(\Leftrightarrow\widehat{aMd}=\widehat{bMc}=180^o-45^o=135^o\)
c)
\(4\widehat{aMd}=5\widehat{aMc}\Leftrightarrow\widehat{aMd}=\dfrac{5}{4}\widehat{aMc}\)
\(\Leftrightarrow\dfrac{9}{4}\widehat{aMc}=180^o\)
\(\Leftrightarrow\widehat{aMc}=\widehat{bMd}=80^o\)
\(\Leftrightarrow\widehat{aMd}=\widehat{bMc}=180^o-80^o=100^o\)
Vậy...
Bạn tự vẽ hình nhé !!!
- TA có : \(\widehat{AMC}=\widehat{BMD}=30\)độ ( Đối đỉnh )
Vì góc AMD và góc BMD kề bù nên :
<=> Góc AMD + góc BMD = 180 độ
<=> góc AMD = 150 độ
b) Cặp đóc đối đỉnh : góc AMC và BMD
góc AMD và BMC
Cặp góc bù nhau : góc ACM và AMD
góc BMD và BMC
a: \(\widehat{dMb}=\widehat{aMc}=35^0\)
\(\widehat{aMd}=\widehat{bMc}=180^0-35^0=145^0\)
b: \(\widehat{aMd}=\dfrac{3}{4}\cdot180^0=135^0\)
=>\(\widehat{bMc}=135^0\)
\(\widehat{aMc}=180^0-135^0=45^0\)
nên \(\widehat{bMd}=45^0\)
c: \(4\cdot\widehat{aMd}=5\cdot\widehat{aMc}\)
=>\(\widehat{aMd}=\dfrac{5}{4}\widehat{aMc}\)
\(\widehat{aMd}=\dfrac{5}{9}\cdot180^0=100^0\)
=>\(\widehat{bMc}=100^0\)
\(\widehat{aMc}=180^0-100^0=80^0\)
nên \(\widehat{bMd}=80^0\)
Ta có: \(\widehat{AMC}+\widehat{AMD}=180^o\)(2 góc kề bù) (1)
Mà \(\widehat{AMC}=2\widehat{AMD}\)(Đề cho) (Ngoặc ''}'' 2 điều lại)
=> \(2\widehat{AMD}+\widehat{AMD}=180^o\)
=> \(\left(2+1\right)\widehat{AMD}=180^o\)
=> \(3\widehat{AMD}=180^o\)
=> \(\widehat{AMD}=180^o:3\)
=> \(\widehat{AMD}=60^o\)(2)
Từ (1) và (2) => \(\widehat{AMC}=180^o-60^o=120^o\)
Lại có: \(\widehat{AMC}=\widehat{BMD}\)(2 góc đối đỉnh) (Ngoặc ''}'' 2 điều lại)
=> \(\widehat{BMD}=120^o\)
Mặt khác: \(\widehat{AMD}=\widehat{BMC}\)(2 góc đối đỉnh)
Mà \(\widehat{AMD}=60^o\)(Theo (2)) (Ngoặc ''}'' 2 điều lại)
=> \(\widehat{BMC}=60^o\)
Vậy \(\widehat{AMC}=\widehat{BMD}=120^o\)
\(\widehat{AMD}=\widehat{BMC}=60^o\)
Hình vẽ sai số đo nên tự chỉnh lại y như đáp án nhé