K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2021

\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\) (vì là 3 số nguyên lt)

11 tháng 10 2021

\(n^3+3n^2+2n-n\left(n^2+3n+2\right)\)

\(=n\left[n\left(n+1\right)+2\left(n+1\right)\right]=n\left(n+1\right)\left(n+2\right)\)

Là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3

\(\Rightarrow n^3+3n^2+2n=n\left(n+1\right)\left(n+2\right)⋮2.3=6\forall n\in Z\)

20 tháng 1 2016

A=n3+n2+2n2+2n

=n2(n+1)+2n(n+1)

=(n+1)(n2+2n)

=n(n+1)(n+2)

Vì tích 3 số tự nhiên liên tiếp luôn chia hết cho 3

=>n(n+1)(n+2) luôn chia hết cho 3 với mọi 

=>A luôn chia hết cho 3 với mọi số nguyên n.

AH
Akai Haruma
Giáo viên
19 tháng 10 2019

Lời giải:

* CM $A$ chia hết cho $2$

Ta thấy $(7n+1)-n=6n+1$ lẻ, chứng tỏ $7n+1,n$ luôn khác tính chẵn lẻ.

Do đó luôn tồn tại 1 trong 2 số là chẵn

$\Rightarrow A=n(2n+1)(7n+1)$ chẵn, hay $A\vdots 2(*)$

* CM $A$ chia hết cho $3$. Xét modulo $3$ cho $n$:

Nếu $n=3k(k\in\mathbb{Z}$

$\Rightarrow n\vdots 3\Rightarow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+2\Rightarrow 7n+1=7(3k+2)+1=3(7k+5)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Vậy tóm lại $A\vdots 3(**)$

Từ $(*); (**), mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$ (đpcm)

AH
Akai Haruma
Giáo viên
3 tháng 10 2019

Lời giải:

* CM $A$ chia hết cho $2$

Ta thấy $(7n+1)-n=6n+1$ lẻ, chứng tỏ $7n+1,n$ luôn khác tính chẵn lẻ.

Do đó luôn tồn tại 1 trong 2 số là chẵn

$\Rightarrow A=n(2n+1)(7n+1)$ chẵn, hay $A\vdots 2(*)$

* CM $A$ chia hết cho $3$. Xét modulo $3$ cho $n$:

Nếu $n=3k(k\in\mathbb{Z}$

$\Rightarrow n\vdots 3\Rightarow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+2\Rightarrow 7n+1=7(3k+2)+1=3(7k+5)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Vậy tóm lại $A\vdots 3(**)$

Từ $(*); (**), mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$ (đpcm)

NV
18 tháng 9 2021

a. 

Đề bài sai, ví dụ \(n=1\) lẻ nhưng  \(1^2+4.1+8=13\) ko chia hết cho 8

b.

n lẻ \(\Rightarrow n=2k+1\)

\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6

\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48

2 tháng 2 2023

A=n^3+3n^2+5n+3

<=>A=n^3+n^2+2n^2+2n+3n+3

<=>A=(n^2+2n+3)(n+1)

<=>A=n(n+1)(n+2)+3(n+1)

Ta thấy, n(n+1)(n+2) là tích ba số nguyên liên tiếp nên n(n+1)(n+2) chia hết cho 6 hay n(n+1)(n+2) chia hết cho 3(1)

Mặt khác, 3(n+1) luôn chia hết cho 3 với mọi x là số nguyên(2)

Từ (1) và (2)
=>n(n+1)(n+2)+3(n+1) chia hết cho 3

Đặt B=n^3+3n^2+5n

Khi n=1 thì B=1+3+5=9 chia hết cho 3

Khi n>1 thì Giả sử B=n^3+3n^2+5n chiahết cho 3

Ta cần chứng minh (n+1)^3+3(n+1)^2+5(n+1)chia hết cho 3

=n^3+3n^2+3n+1+3n^2+6n+3+5n+5

=n^3+3n^2+5n+3n^2+9n+9 chia hêt cho 3

=>B chia hết cho 3

=>A chia hết cho 3

16 tháng 4 2018

Cách 1: Quy nạp

Đặt An = n3 + 3n2 + 5n

+ Ta có: với n = 1

A1 = 1 + 3 + 5 = 9 chia hết 3

+ giả sử với n = k ≥ 1 ta có:

Ak = (k3 + 3k2 + 5k) chia hết 3 (giả thiết quy nạp)

Ta chứng minh Ak + 1 chia hết 3

Thật vậy, ta có:

Ak + 1 = (k + 1)3 + 3(k + 1)2 + 5(k + 1)

         = k3 + 3k2 + 3k + 1 + 3k2 + 6k + 3 + 5k + 5

         = (k3 + 3k2 + 5k) + 3k2 + 9k + 9

Theo giả thiết quy nạp: k3 + 3k2 + 5k ⋮ 3

Mà 3k2 + 9k + 9 = 3.(k2 + 3k + 3) ⋮ 3

⇒ Ak + 1 ⋮ 3.

Cách 2: Chứng minh trực tiếp.

Có: n3 + 3n2 + 5n

      = n.(n2 + 3n + 5)

      = n.(n2 + 3n + 2 + 3)

      = n.(n2 + 3n + 2) + 3n

      = n.(n + 1)(n + 2) + 3n.

Mà: n(n + 1)(n + 2) ⋮ 3 (tích của ba số tự nhiên liên tiếp)

3n ⋮ 3

⇒ n3 + 3n2 + 5n = n(n + 1)(n + 2) + 3n ⋮ 3.

Vậy n3 + 3n2 + 5n chia hết cho 3 với mọi ∀n ∈ N*

30 tháng 3 2018

19 tháng 10 2019

Ta có :

\(n^3-13n=n^3-n-12n=n\left(n^2-1\right)-12n=n\left(n-1\right)\left(n+1\right)-12n\)

Với mọi số nguyên n ta có :

+) \(n\left(n-1\right)\left(n+1\right)⋮6\) (tích của 3 số nguyên liên tiếp )

+) \(12n⋮6\)

\(\Leftrightarrow n\left(n-1\right)\left(n+1\right)-12n⋮6\)

\(\Leftrightarrow n^3-12n⋮6\left(đpcm\right)\)

14 tháng 8 2015

a) Ta có: m^3-m = m(m^2-1^2) = m.(m+1)(m-1) là tích của 3 số nguyên liên tiếp

 => m(m+1)(m-1) chia hết cho 3 và 2

Mà (3,2) = 1

=> m(m+1)(m-1) chia hết cho 6

=> m^3 - m  chia hết cho 6  V m thuộc Z

b) Ta có: (2n-1)-2n+1 = 2n-1-2n+1 = 0-1+1 = 0 luôn chia hết cho 8

=> (2n-1)-2n+1 luôn chia hết cho 8 V n thuộc Z

Tick nha pham thuy trang

 

14 tháng 8 2015

a, m3 - m = m( m2 - 12) = m(m - 1 ) ( m + 1) => 3 số nguyên liên tiếp : hết cho 6

mk chỉ biết có thế thôi