K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2021

Với n = 1 thì \(x^1\ge2.x^0=0\)

Giả sử đẳng thức đúng với n = k nghĩa là : \(x^k\ge\left(k+1\right).x^{k-1}\).

Ta phải chứng minh :

\(x^n\ge\left(n+1\right).x^{n-1}\)đúng với n = k + 1. Ta phải chứng minh \(x^{k+1}\ge\left[\left(k+1\right)+1\right].x^{\left(k-1\right)+1}=\left(k+2\right).x^k\)

\(=\left(x^k.k+2x^k+1\right)-1=\left(x^k+1\right)^2-1\le x^{k+1}\)

Vậy đẳng thức luôn đúng với mọi \(n\inℕ^∗\)

24 tháng 3 2020

Nếu có bạn nào trả lời thì ngoài t.i.c.k đúng tớ còn pải làm thế nào để 'chọn câu trả lời này'??

24 tháng 3 2020

Gọi d là ƯCLN (2n+1;2n+3) (d thuộc N*)

=> (2n+3)-(2n+1) chia hết cho d

=> 2 chia hết cho d

Mà d thuộc N* => d={1;2}

Ta có 2n+1 không chia hết cho 2 và 2n+3 không chia hết cho 2

=> d=1

=> đpcm

17 tháng 9 2019

dùng đồng dư đi :v 

2^2^2n=16^n

có 16 đồng dư 2 mod 7

=>16^n đồng dư 2 mod 7

=>16^n+5 đồng dư 0 mod 7

2 tháng 8 2020

Tham khảo câu trả lời tại đây bạn nhé !

https://olm.vn/hoi-dap/detail/224113518607.html

Câu hỏi của An Van - Toán lớp 10 - Học toán với OnlineMath

Chúc bạn học tốt ^_^

2 tháng 8 2020

Bài làm:

Ta có: \(n^3+3n^2+5n=\left(n^3+3n^2+2n\right)+3n\)

\(=n\left(n+1\right)\left(n+2\right)+3n\)

Vì n(n+1)(n+2) là tích 3 STN liên tiếp 

=> n(n+1)(n+2) chia hết cho 3, mà 3n chia hết cho 3

=> đpcm

4 tháng 9 2019

a) \(25^{n+1}-25^n=25^n\left(25-1\right)=25^n.4⋮25.4=100\)

b) \(n^2\left(n-1\right)-2n\left(n-1\right)=\left(n^2-2n\right)\left(n-1\right)\)

\(=n\left(n-1\right)\left(n-2\right)\)

Tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n^2\left(n-1\right)-2n\left(n-1\right)⋮6\)

c) \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)

Tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n^3-n⋮6\)

 
4 tháng 9 2019

a,25^n.24

mà 25^n :5

9 tháng 2 2020

2x+3y chia hết cho 13 

Mà (13; 7) = 1 => 7(2x+3y) chia hết cho 13

=> 14x + 21y chia hết cho 13

Lại có 13x + 13y chia hết cho 13

=> (14x+21y) - (13x+13y) chia hết cho 13

=> x+8y chia hết cho 13 (đpcm)

9 tháng 2 2020

Ta thấy : \(2x+16y=\left(2x+3y\right)+13y⋮13\)

\(\Rightarrow2x+16y⋮13\Rightarrow2\left(x+8y\right)⋮13\)

Mà  \(\left(13,2\right)=1\)

\(\Rightarrow x+8y⋮13\forall x,y\inℕ\)