K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2019

A B C D M N P Q K L O T

Qua P dựng đường thẳng song song với CM, đường thẳng này cắt BD tại T.

Chú ý rằng tứ giác ABCD là hình bình hành nên PD // CB và CD // BQ

Từ đó ta có 2 cặp tam giác đồng dạng theo TH g.g: \(\Delta\)BCQ ~ \(\Delta\)DPC; \(\Delta\)CBM ~ \(\Delta\)PDT

Suy ra \(\frac{DT}{BM}=\frac{PD}{CB}=\frac{CD}{QB}\). Từ đây \(\Delta\)DTC ~ \(\Delta\)BMQ (c.g.c), suy ra CT // QM (1)

Mặt khác, do PQ là tiếp tuyến tại C của (O) nên ^PCN = ^CMN = ^PTN. Suy ra tứ giác CTNP nội tiếp (2)

Từ (1) và (2) suy ra tứ giác MQPN nội tiếp (3) . Từ tứ giác CTNP nội tiếp ta có ^PCN = ^PTC = ^QMC.

Hay ^PNL = ^QMK. Kết hợp với (3) suy ra tứ giác MKLN nội tiếp. Áp dụng ĐL Reim ta thu được KL // PQ

Mà OC vuông góc với PQ nên OC cũng vuông góc với KL (đpcm).

24 tháng 10 2021

Có lẽ đây không phải toán lớp 7 đâu nha

1 tháng 11 2021

1 PHẦN 8 , ĐÂY LÀ CÂU CUỐI TRONG MỘT BÀI THI CHUYÊN TOÁN CỰC KHÓ CỦA MỸ

https://www.youtube.com/watch?v=OkmNXy7er84&ab_channel=3Blue1Brown ĐÂY LÀ LINK NẾU MỌI NGI CÓ Ý ĐỊNH TÌM HIÊU CÁI NÀY

9 tháng 12 2017

1). Gọi MN giao PQ tại T. Theo định lí Thales, ta có T P T C = T D T B = T C T Q .

Từ đó T C 2 = T P . T Q .

Do TC là tiếp tuyến của (O), nên  T C 2 = T M . T N .

Từ đó T M . T N = T C 2 = T P . T Q , suy ra tứ giác MNPQ nội tiếp.

30 tháng 6 2017

Đối xứng tâm

Tứ giác AOBM có các đường chéo cắt nhau tại trung điểm của mỗi đường nên là hình bình hành suy ra :

BM // OA, BM = OA (1)

Chứng minh tương tự ta có :

NC // OA, NC = OA (2)

Từ (1) và (2) suy ra BM // NC, BM = NC

Vậy MNCB là hình bình hành

16 tháng 10 2016

Hình học lớp 8

16 tháng 10 2016

D là trung điểm của AB

E là trung điểm của AC

=> DE là đường trung bình của tam giác ABC

=> DE // BC (1)

     DE = BC/2 (2)

D là trung điểm của OM (M đối xứng với O qua D)

E là trung điểm của ON (N đối xứng với O qua E)

=> DE là đường trung bình của tam giác OMN

=> DE // MN (3)

     DE = MN/2 (4)

Từ (1) và (3)

=> MN // BC (5)

Từ (2) và (4)

=> MN = BC (6)

Từ (5) và (6)

=> MNCB là hình bình hành