Cho phân thức
\(M=\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)\left(ab+bc+ca\right)^2}{\left(a+b+c\right)^2-\left(ab+bc+ca\right)}\)
a) Tìm các giá trị của a,b,c để phân thức được xác định (tức để mẫu khác 0)
b)Rút gọn phân thức M.
Các bạn giúp mk với!
a)Ta có :
(a+b+c)2 - (ab+bc+ca) =0 <=> a2+b2+c2+ab+bc+ca =0
<=>2a2+2b2+2c2+2ab+2bc+2ca=0
<=>(a+b)2+(b+c)2+(c+a)2=0
<=>a+b =b+c =c+a =0
<=>a=b=c=0
Vậy điều kiện để phân thức M được xác định là a;b;c không đồng thời bằng 0.
b)Ta có hằng thức: (a+b+c)2=a2+b2+c2+2(ab+bc+ca)
Ta đặt a2+b2+c2=x ; ab+bc+ca=y.Khi đó (a+b+c)2= x+2y
Ta có:
\(M=\frac{x\left(x+2y\right)+y^2}{x+2y-y}=\frac{x^2+2xy+y^2}{x+y}=\frac{\left(x+y\right)^2}{x+y}=x+y\)
= a2+b2+c2+ab+bc+ca.
=a2+b2+c2+ab+bc+ca
Gt thêm nhe