cho các số thực x,y tm đk
\(\sqrt{x^2+11}+\sqrt{x-2018}+x^2\)=\(\sqrt{y^2+11}+\sqrt{y-2018}+y^2\)
tính giá trị biểu thức m=x^11-x^2010
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
đk: \(x\ge2\)
Đặt y = \(\sqrt{x+2}\) ta biến pt về dạng pt thuần nhất bậc 3 đối vs x và y:
ta có : \(x^3-3x^2+2y^3-6x=0\)
\(\Leftrightarrow x^3-3xy^2+2y^3=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\\x=-2y\end{matrix}\right.\)
ta sẽ có nghiệm : \(x=2;x=2-2\sqrt{3}\)
\(1.đk:\left(x+2\right)^3\ge0\Leftrightarrow x\ge-2\)
\(pt\Leftrightarrow x^3-3x\left(x+2\right)+2\sqrt{\left(x+2\right)^3}=0\)
\(\Leftrightarrow x^3-x\left(x+2\right)+2\sqrt{\left(x+3\right)^2}-2x\left(x+2\right)=0\)
\(\Leftrightarrow x\left[x^2-\left(x+2\right)\right]+2\left(x+2\right)\left(\sqrt{x+2}-x\right)=0\)
\(\Leftrightarrow x\left[\left(x-\sqrt{x+2}\right)\left(x+\sqrt{x+2}\right)\right]+2\left(x+2\right)\left(\sqrt{x+2}-x\right)=0\)
\(\Leftrightarrow\left(\sqrt{x+2}-x\right)\left[-x\left(\sqrt{x+2}+x\right)+2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(\sqrt{x+2}-x\right)^2\left(2\sqrt{x+2}+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2}=x\left(2\right)\\2\sqrt{x+2}=-x\left(3\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2=x+2\end{matrix}\right.\)\(\Leftrightarrow x=2\left(tm\right)\)
\(\left(3\right)\Leftrightarrow\left\{{}\begin{matrix}-x\ge0\Leftrightarrow x\le0\\x^2=4\left(x+2\right)\end{matrix}\right.\)\(\Leftrightarrow x=2-2\sqrt{3}\left(tm\right)\)
P/s : làm bừa thôi!
\(\sqrt{x-2018}+\sqrt{x^2+11}+x^2=\sqrt{y^2+11}+\sqrt{y-2018}+y^2\)
\(\Leftrightarrow x=y\)
\(\Rightarrow M=x^{11}-x^{2018}\)
Đến đây em tịt !!
ĐKXĐ:...
\(\Leftrightarrow\sqrt{x^2+11}-\sqrt{y^2+11}+\sqrt{x-2018}-\sqrt{y-2018}+x^2-y^2=0\)
\(\Leftrightarrow\frac{\left(x-y\right)\left(x+y\right)}{\sqrt{x^2+11}+\sqrt{y^2+11}}+\frac{x-y}{\sqrt{x-2018}+\sqrt{y-2018}}+\left(x-y\right)\left(x+y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(\frac{x+y}{\sqrt{x^2+11}+\sqrt{y^2+11}}+\frac{1}{\sqrt{x-2018}+\sqrt{y-2018}}+x+y\right)=0\)
\(\Leftrightarrow x=y\) (ngoặc phía sau luôn dương)
Thay vào M chẳng được cái gì cả, \(M=x^{11}-x^{2018}\) :(
Chắc bạn nhầm đề
Cô chữa rồi =)) giải đến x = y rồi thay vào là được. x, y thuộc điều kiện xác định rồi thì M số bự chà bá luôn nên là tính dạng tổng quát thôi
Bài 2 xét x=0 => A =0
xét x>0 thì \(A=\frac{1}{x-2+\frac{2}{\sqrt{x}}}\)
để A nguyên thì \(x-2+\frac{2}{\sqrt{x}}\inƯ\left(1\right)\)
=>cho \(x-2+\frac{2}{\sqrt{x}}\)bằng 1 và -1 rồi giải ra =>x=?
1,Ta có \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}\)
=> \(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=2\)
\(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)
\(b+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)\)
\(c+2=\left(\sqrt{c}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)
=> \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}+\frac{\sqrt{b}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)}+...\)
=> \(\frac{\sqrt{a}}{a+2}+...=\frac{2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
=> M=0
Vậy M=0
Cách của mình dài ,bạn nào có cách khác ngắn gọn hơn thì chỉ cho mình với ạ. Cảm ơn
Trước hết ta chứng minh BĐT phụ sau: \(\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\ge\sqrt{\left(a+x\right)^2+\left(b+y\right)^2}.\)(*)
Thật vậy: \(ax+by\le\sqrt{\left(ax+by\right)^2}\le\sqrt{\left(a^2+b^2\right)\left(x^2+y^2\right)}\)(BĐT bunhiacopxi)
\(\Leftrightarrow a^2+b^2+x^2+y^2+2\sqrt{\left(a^2+b^2\right)\left(x^2+y^2\right)}\ge a^2+b^2+x^2+y^2+2\left(ax+by\right)\)
\(\Leftrightarrow\left(\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\right)^2\ge\left(a+x\right)^2+\left(b+y\right)^2\)
\(\Leftrightarrow\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\ge\sqrt{\left(a^2+b^2\right)\left(x^2+y^2\right)}\). BĐT đã được chứng minh
Xét : \(\left(x+\sqrt{1+x^2}\right)\left(x-\sqrt{1+x^2}\right)=x^2-\left(1+x^2\right)=-1.\)
Theo giả thết : \(\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=2018\)
\(\Rightarrow2018\left(x-\sqrt{1+x^2}\right)=-\left(y+\sqrt{1+y^2}\right).\)
\(\Leftrightarrow2018x+y=2018\sqrt{1+x^2}-\sqrt{1+y^2}.\)(1)
Tương tự:
Xét:\(\left(y+\sqrt{1+y^2}\right)\left(y-\sqrt{1+y^2}\right)=y^2-\left(1+y^2\right)=-1\)
Theo giả thiết : \(\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=2018\)
\(\Rightarrow2018\left(y-\sqrt{1+y^2}\right)=-\left(x+\sqrt{1+x^2}\right)\)
\(\Leftrightarrow x+2018y=-\sqrt{1+x^2}+2018\sqrt{1+y^2}\)(2)
Cộng các vế của (1) và (2) lại ta được
\(2019\left(x+y\right)=2017\left(\sqrt{1+x^2}+\sqrt{1+y^2}\right)\)
Khi đó áp dụng bất đẳng thức (*) ta có;
\(2019\left(x+y\right)=2017\left(\sqrt{1^2+x^2}+\sqrt{1^2+y^2}\right)\ge2017\left(\sqrt{\left(1+1\right)^2+\left(x+y\right)^2}\right)\)
\(\Rightarrow2019\left(x+y\right)\ge2017\sqrt{4+\left(x+y\right)^2}\)
Đặt \(x+y=a>0\)ta có;
\(2019a\ge2017\sqrt{4+a^2}\Leftrightarrow2019^2a^2\ge2017^2a^2+2017^2.4\)
\(\Leftrightarrow\left(2019^2-2017^2\right)a^2\ge\left(2017.2\right)^2\Leftrightarrow a^2\ge\frac{2017^2.2.2}{2.4036}\Leftrightarrow a^2\ge\frac{2017^2}{2018}\)
\(\Rightarrow a\ge\frac{2017}{\sqrt{2018}}\Rightarrow x+y\ge\frac{2017}{\sqrt{2018}}.\)
Vậy giá trị nhỏ nhất của biểu thức P=x+y là \(\frac{2017}{\sqrt{2018}}\)
Dấu '=' xảy ra khi \(x=y=\frac{2017}{2\sqrt{2018}}.\)
bn đào thu hà k cần cm bdt phụ đâu đấy là bdt mincopski đc dùng luôn