Tìm GTNN của biểu thức \(P=x^{2020}-2020x+2020\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`C=|x+2|+|x-4|+2020`
`=|x+2|+|4-x|+2020`
Áp dụng BĐT `|A|+|B|>=|A+B|`
`=>|x+2|+|4-x|>=|x+2+4-x|=6`
`=>C>=2020+6=2026`
Dấu "=" xảy ra khi `(x+2)(4-x)>=0<=>(x+2)(x-4)<=0<=>-2<=x<=4`
Ta có : \(\left|x-2019\right|\ge x-2019\). Dấu "=" khi \(x-2019\ge0\)
\(\left|x-2020\right|=\)\(\left|2020-x\right|\ge2020-x\).Dấu "=" khi \(2020-x\ge0\)
=> \(\left|x-2019\right|+\left|2020-x\right|\)\(\ge x-2019+2020-x\)
=> \(\left|x-2019\right|+\left|x-2020\right|+2\)\(\ge3\)
hay \(A\ge3\)
\(MinA=3\Leftrightarrow\)\(\hept{\begin{cases}x-2019\ge0\\2020-x\ge0\end{cases}}\)\(\Leftrightarrow2019\le x\le2020\)
\(x=\dfrac{1}{\sqrt{2}}\left(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\right)=\sqrt{6}\)
\(y=\sqrt{\left(\sqrt{6}-1\right)^2}=\sqrt{6}-1\)
\(\Rightarrow x-y=1\Rightarrow P=1\)
\(B=x-2020-\sqrt{x-2020}+\dfrac{1}{4}+\dfrac{8079}{4}\)
\(B=\left(\sqrt{x-2020}-\dfrac{1}{2}\right)^2+\dfrac{8079}{4}\ge\dfrac{8079}{4}\)
\(B_{min}=\dfrac{8079}{4}\) khi \(x=\dfrac{8081}{4}\)